Your browser doesn't support javascript.
loading
Ezrin interacts with S100A4 via both its N- and C-terminal domains.
Biri-Kovács, Beáta; Kiss, Bence; Vadászi, Henrietta; Gógl, Gergo; Pálfy, Gyula; Török, György; Homolya, László; Bodor, Andrea; Nyitray, László.
Afiliação
  • Biri-Kovács B; Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
  • Kiss B; Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
  • Vadászi H; Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
  • Gógl G; Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
  • Pálfy G; Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary.
  • Török G; Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
  • Homolya L; Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
  • Bodor A; Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary.
  • Nyitray L; Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
PLoS One ; 12(5): e0177489, 2017.
Article em En | MEDLINE | ID: mdl-28493957
Ezrin belongs to the ERM (ezrin, radixin, moesin) protein family that has a role in cell morphology changes, adhesion and migration as an organizer of the cortical cytoskeleton by linking actin filaments to the apical membrane of epithelial cells. It is highly expressed in a variety of human cancers and promotes metastasis. Members of the Ca2+-binding EF-hand containing S100 proteins have similar pathological properties; they are overexpressed in cancer cells and involved in metastatic processes. In this study, using tryptophan fluorescence and stopped-flow kinetics, we show that S100A4 binds to the N-terminal ERM domain (N-ERMAD) of ezrin with a micromolar affinity. The binding involves the F2 lobe of the N-ERMAD and follows an induced fit kinetic mechanism. Interestingly, S100A4 binds also to the unstructured C-terminal actin binding domain (C-ERMAD) with similar affinity. Using NMR spectroscopy, we characterized the complex of S100A4 with the C-ERMAD and demonstrate that no ternary complex is simultaneously formed with the two ezrin domains. Furthermore, we show that S100A4 co-localizes with ezrin in HEK-293T cells. However, S100A4 very weakly binds to full-length ezrin in vitro indicating that the interaction of S100A4 with ezrin requires other regulatory events such as protein phosphorylation and/or membrane binding, shifting the conformational equilibrium of ezrin towards the open state. As both proteins play an important role in promoting metastasis, the characterization of their interaction could shed more light on the molecular events contributing to this pathological process.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas do Citoesqueleto / Proteína A4 de Ligação a Cálcio da Família S100 Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas do Citoesqueleto / Proteína A4 de Ligação a Cálcio da Família S100 Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article