Your browser doesn't support javascript.
loading
Synergistic Activity with NOTCH Inhibition and Androgen Ablation in ERG-Positive Prostate Cancer Cells.
Mohamed, Ahmed A; Tan, Shyh-Han; Xavier, Charles P; Katta, Shilpa; Huang, Wei; Ravindranath, Lakshmi; Jamal, Muhammad; Li, Hua; Srivastava, Meera; Srivatsan, Eri S; Sreenath, Taduru L; McLeod, David G; Srinivasan, Alagarsamy; Petrovics, Gyorgy; Dobi, Albert; Srivastava, Shiv.
Afiliação
  • Mohamed AA; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Tan SH; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Xavier CP; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Katta S; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Huang W; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Ravindranath L; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Jamal M; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Li H; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Srivastava M; Department of Anatomy, Physiology and Genetics, Uniformed University of Health Sciences, Bethesda, Maryland.
  • Srivatsan ES; Division of General Surgery, Department of Surgery, VAGLAHS/David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California.
  • Sreenath TL; Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California.
  • McLeod DG; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Srinivasan A; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Petrovics G; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Dobi A; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
  • Srivastava S; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland. ssrivastava@cpdr.org adobi@cpdr.org.
Mol Cancer Res ; 15(10): 1308-1317, 2017 10.
Article em En | MEDLINE | ID: mdl-28607007
ABSTRACT
The oncogenic activation of the ETS-related gene (ERG) due to gene fusions is present in over half of prostate cancers in Western countries. Because of its high incidence and oncogenic role, ERG and components of ERG network have emerged as potential drug targets for prostate cancer. Utilizing gene expression datasets, from matched normal and prostate tumor epithelial cells, an association of NOTCH transcription factors with ERG expression status was identified, confirming that NOTCH factors are direct transcriptional targets of ERG. Inhibition of ERG in TMPRSS2-ERG-positive VCaP cells led to decreased levels of NOTCH1 and 2 proteins and downstream transcriptional targets and partially recapitulated the phenotypes associated with ERG inhibition. Regulation of NOTCH1 and 2 genes by ERG were also noted with ectopic ERG expression in LNCaP (ERG-negative prostate cancer) and RWPE-1 (benign prostate-derived immortalized) cells. Furthermore, inhibition of NOTCH by the small-molecule γ-secretase inhibitor 1, GSI-1, conferred an increased sensitivity to androgen receptor (AR) inhibitors (bicalutamide and enzalutamide) or the androgen biosynthesis inhibitor (abiraterone) in VCaP cells. Combined treatment with bicalutamide and GSI-1 showed strongest inhibition of AR, ERG, NOTCH1, NOTCH2, and PSA protein levels along with decreased cell growth, cell survival, and enhanced apoptosis. Intriguingly, this effect was not observed in ERG-negative prostate cancer cells or immortalized benign/normal prostate epithelial cells. These data underscore the synergy of AR and NOTCH inhibitors in reducing the growth of ERG-positive prostate cancer cells.Implications Combinational targeting of NOTCH and AR signaling has therapeutic potential in advanced ERG-driven prostate cancers. Mol Cancer Res; 15(10); 1308-17. ©2017 AACR.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oligopeptídeos / Neoplasias da Próstata / Receptores Notch / Antagonistas de Androgênios Tipo de estudo: Prognostic_studies Limite: Humans / Male Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oligopeptídeos / Neoplasias da Próstata / Receptores Notch / Antagonistas de Androgênios Tipo de estudo: Prognostic_studies Limite: Humans / Male Idioma: En Ano de publicação: 2017 Tipo de documento: Article