Your browser doesn't support javascript.
loading
Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement.
Zhao, Mengzhen; Wang, Xu; Ren, Shaokang; Xing, Yikang; Wang, Jun; Teng, Nan; Zhao, Dongxia; Liu, Wei; Zhu, Dan; Su, Shao; Shi, Jiye; Song, Shiping; Wang, Lihua; Chao, Jie; Wang, Lianhui.
Afiliação
  • Zhao M; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Wang X; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Ren S; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Xing Y; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Wang J; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Teng N; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Zhao D; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Liu W; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Zhu D; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Su S; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Shi J; UCB Pharma , 208 Bath Road, Slough SL1 3WE, U.K.
  • Song S; Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.
  • Wang L; Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.
  • Chao J; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
  • Wang L; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China.
ACS Appl Mater Interfaces ; 9(26): 21942-21948, 2017 Jul 05.
Article em En | MEDLINE | ID: mdl-28618781
ABSTRACT
DNA origami has been established as addressable templates for site-specific anchoring of gold nanoparticles (AuNPs). Given that AuNPs are assembled by charged DNA oligonucleotides, it is important to reduce the charge repulsion between AuNPs-DNA and the template to realize high yields. Herein, we developed a cavity-type DNA origami as templates to organize 30 nm AuNPs, which formed dimer and tetramer plasmonic nanostructures. Transmission electron microscopy images showed that high yields of dimer and tetramer plasmonic nanostructures were obtained by using the cavity-type DNA origami as the template. More importantly, we observed significant Raman signal enhancement from molecules covalently attached to the plasmonic nanostructures, which provides a new way to high-sensitivity Raman sensing.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article