Your browser doesn't support javascript.
loading
Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion.
Liang, Hua; Xu, Feng; Wen, Xian-Jie; Liu, Hong-Zhen; Wang, Han-Bing; Zhong, Ji-Ying; Yang, Cheng-Xiang; Zhang, Bin.
Afiliação
  • Liang H; Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
  • Xu F; Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
  • Wen XJ; Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
  • Liu HZ; Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
  • Wang HB; Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China. Electronic address: foshanwanghanbing@126.com.
  • Zhong JY; Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
  • Yang CX; Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
  • Zhang B; Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China. Electronic address: foshanzhangbin@126.com.
Eur J Pharmacol ; 812: 18-27, 2017 Oct 05.
Article em En | MEDLINE | ID: mdl-28668506
ABSTRACT
Acute kidney injury caused by ischemia-reperfusion injury (IRI) is a major risk factor for chronic kidney disease, which is characterized by renal interstitial fibrosis. However, the molecular mechanisms underlying renal fibrosis induced by IRI are not fully understood. Our results showed that interleukin (IL)-33 was induced markedly after IRI insult, and the kidneys of mice following IRI plus IL-33 treatment presented more severe renal fibrosis compared with mice treated with IRI alone. Therefore, we investigated whether inhibition of IL-33 protects against IRI-induced renal fibrosis. Mice were administrated with soluble ST2 (sST2), a decoy receptor that neutralizes IL-33 activity, or vehicle by intraperitoneal injection for 14 days after IRI challenge. We revealed that mice treated with sST2 exhibited less severe renal dysfunction and fibrosis in response to IRI compared with vehicle-treated mice. Inhibition of IL-33 suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the kidneys after IRI stress, which was associated with less expression of extracellular matrix proteins. Furthermore, inhibition of IL-33 also showed a significant reduction of F4/80+ macrophages and CD3+ T cells in the kidneys of mice after IRI treatment. Finally, Treatment with IL-33 inhibitor reduced proinflammatory cytokine and chemokine levels in the kidneys of mice following IRI insult. Taken together, our findings indicate that IL-33 signaling plays a critical role in the pathogenesis of IRI-induced renal fibrosis through regulating myeloid fibroblast accumulation, inflammation cell infiltration, and the expression of proinflammatory cytokines and chemokines.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Transdução de Sinais / Interleucina-33 / Rim Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Transdução de Sinais / Interleucina-33 / Rim Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article