Your browser doesn't support javascript.
loading
Molecular adaptation to high pressure in cytochrome P450 1A and aryl hydrocarbon receptor systems of the deep-sea fish Coryphaenoides armatus.
Lemaire, Benjamin; Karchner, Sibel I; Goldstone, Jared V; Lamb, David C; Drazen, Jeffrey C; Rees, Jean François; Hahn, Mark E; Stegeman, John J.
Afiliação
  • Lemaire B; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
  • Karchner SI; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.
  • Goldstone JV; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.
  • Lamb DC; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
  • Drazen JC; Department of Oceanography, University of Hawaii, Honolulu, HI 96822, USA.
  • Rees JF; Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
  • Hahn ME; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.
  • Stegeman JJ; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA; Boston University Superfund Research Program, Boston University School of Public Health, Boston, MA, USA. Electronic address: jstegeman@whoi.edu.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 155-165, 2018 Jan.
Article em En | MEDLINE | ID: mdl-28694077
ABSTRACT
Limited knowledge of the molecular evolution of deep-sea fish proteomes so far suggests that a few widespread residue substitutions in cytosolic proteins binding hydrophilic ligands contribute to resistance to the effects of high hydrostatic pressure (HP). Structure-function studies with additional protein systems, including membrane bound proteins, are essential to provide a more general picture of adaptation in these extremophiles. We explored molecular features of HP adaptation in proteins binding hydrophobic ligands, either in lipid bilayers (cytochrome P450 1A - CYP1A) or in the cytosol (the aryl hydrocarbon receptor - AHR), and their partners P450 oxidoreductase (POR) and AHR nuclear translocator (ARNT), respectively. Cloning studies identified the full-length coding sequence of AHR, CYP1A and POR, and a partial sequence of ARNT from Coryphaenoides armatus, an abyssal gadiform fish thriving down to 5000m depth. Inferred protein sequences were aligned with many non-deep-sea homologs to identify unique amino acid substitutions of possible relevance in HP adaptation. Positionally unique substitutions of various physicochemical properties were found in all four proteins, usually at sites of strong-to-absolute residue conservation. Some were in domains deemed important for protein-protein interaction or ligand binding. In addition, some involved removal or addition of beta-branched residues; local modifications of beta-branched residue patterns could be important to HP adaptation. In silico predictions further suggested that some unique substitutions might substantially modulate the flexibility of the polypeptide segment in which they are found. Repetitive motifs unique to the abyssal fish AHR were predicted to be rich in glycosylation sites, suggesting that post-translational changes could be involved in adaptation as well. Recombinant CYP1A and AHR showed functional properties (spectral characteristics, catalytic activity and ligand binding) that demonstrate proper folding at 1atm, indicating that they could be used as deep-sea fish protein models to further evaluate protein function under pressure. This article is part of a Special Issue entitled Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone".
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Receptores de Hidrocarboneto Arílico / Sistema Enzimático do Citocromo P-450 / Proteínas de Peixes / Gadiformes / Translocador Nuclear Receptor Aril Hidrocarboneto Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Receptores de Hidrocarboneto Arílico / Sistema Enzimático do Citocromo P-450 / Proteínas de Peixes / Gadiformes / Translocador Nuclear Receptor Aril Hidrocarboneto Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article