Your browser doesn't support javascript.
loading
Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young.
Frohnert, Brigitte I; Laimighofer, Michael; Krumsiek, Jan; Theis, Fabian J; Winkler, Christiane; Norris, Jill M; Ziegler, Anette-Gabriele; Rewers, Marian J; Steck, Andrea K.
Afiliação
  • Frohnert BI; Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado, Aurora, Colorado.
  • Laimighofer M; Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany.
  • Krumsiek J; Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany.
  • Theis FJ; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
  • Winkler C; Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany.
  • Norris JM; Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische, Universität München, Neuherberg, Germany.
  • Ziegler AG; Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado.
  • Rewers MJ; Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische, Universität München, Neuherberg, Germany.
  • Steck AK; Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado, Aurora, Colorado.
Pediatr Diabetes ; 19(2): 277-283, 2018 03.
Article em En | MEDLINE | ID: mdl-28695611
BACKGROUND: Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects. METHODS: The 10-factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3-factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941). RESULTS: Stratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) CONCLUSIONS: We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Antígenos HLA-D / Autoimunidade / Predisposição Genética para Doença / Polimorfismo de Nucleotídeo Único / Diabetes Mellitus Tipo 1 / Modelos Genéticos Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Child / Child, preschool / Female / Humans / Infant / Male Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Antígenos HLA-D / Autoimunidade / Predisposição Genética para Doença / Polimorfismo de Nucleotídeo Único / Diabetes Mellitus Tipo 1 / Modelos Genéticos Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Child / Child, preschool / Female / Humans / Infant / Male Idioma: En Ano de publicação: 2018 Tipo de documento: Article