Your browser doesn't support javascript.
loading
Investigating gene flow between the blind cavefish Garra barreimiae and its conspecific surface populations.
Kirchner, Sandra; Sattmann, Helmut; Haring, Elisabeth; Plan, Lukas; Victor, Reginald; Kruckenhauser, Luise.
Afiliação
  • Kirchner S; University of Vienna, Department of Integrative Zoology, Althanstraße 14, 1090, Vienna, Austria. sandra.kirchner@nhm-wien.ac.at.
  • Sattmann H; Natural History Museum Vienna, Central Research Laboratories, Burgring 7, 1010, Vienna, Austria. sandra.kirchner@nhm-wien.ac.at.
  • Haring E; Natural History Museum Vienna, Third Zoological Department, Burgring 7, 1010, Vienna, Austria.
  • Plan L; University of Vienna, Department of Integrative Zoology, Althanstraße 14, 1090, Vienna, Austria.
  • Victor R; Natural History Museum Vienna, Central Research Laboratories, Burgring 7, 1010, Vienna, Austria.
  • Kruckenhauser L; Natural History Museum, Department for Geology & Paleontology, Burgring 7, 1010, Vienna, Austria.
Sci Rep ; 7(1): 5130, 2017 07 11.
Article em En | MEDLINE | ID: mdl-28698621
ABSTRACT
Cave-dwelling taxa often share the same phenotypic modifications like absence of eyes and pigmentation. These "troglomorphic characters" are expressed in the populations of Garra barreimiae from the Al Hoota Cave and nearby Hoti Pit in Northern Oman. Surface morphotypes of this cyprinid species are common throughout the distribution area. Very rarely individuals with intermediate phenotypes can be found. In the present study, potential gene flow between cave and surface populations was tested and population structure within five sampling sites was assessed. Overall, 213 individuals were genotyped at 18 microsatellite loci. We found that the cave populations have lower genetic diversity and are clearly isolated from the surface populations, which seem to be sporadically in contact with each other. The results indicate a recent genetic bottleneck in the cave populations. Thus, it can be assumed that during climatic changes the connection between cave and surface water bodies was disjoined, leaving a subpopulation trapped inside. Nevertheless, occasional gene flow between the morphotypes is detectable, but hybridisation seems only possible in cave habitat with permanent connection to surface water. Individuals from surface sites bearing intermediate phenotypes but cave genotypes imply that phenotypic plasticity might play a role in the development of the phenotype.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cyprinidae / Análise de Sequência de DNA / Proteínas de Peixes / Fluxo Gênico Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cyprinidae / Análise de Sequência de DNA / Proteínas de Peixes / Fluxo Gênico Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article