Your browser doesn't support javascript.
loading
Starch accumulation in hulless barley during grain filling.
Zheng, Xu-Guang; Qi, Jun-Cang; Hui, Hong-Shan; Lin, Li-Hao; Wang, Feng.
Afiliação
  • Zheng XG; Department of Agronomy, College of Agriculture, Shihezi University, Shihezi, China.
  • Qi JC; Department of Agronomy, College of Agriculture, Shihezi University, Shihezi, China. shzqjc@qq.com.
  • Hui HS; Department of Agronomy, College of Agriculture, Shihezi University, Shihezi, China.
  • Lin LH; Department of Agronomy, College of Agriculture, Shihezi University, Shihezi, China.
  • Wang F; Department of Agronomy, College of Agriculture, Shihezi University, Shihezi, China.
Bot Stud ; 58(1): 30, 2017 Dec.
Article em En | MEDLINE | ID: mdl-28710720
BACKGROUND: Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. RESULTS: The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. CONCLUSIONS: The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article