Your browser doesn't support javascript.
loading
Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation.
Gates, Leah A; Shi, Jiejun; Rohira, Aarti D; Feng, Qin; Zhu, Bokai; Bedford, Mark T; Sagum, Cari A; Jung, Sung Yun; Qin, Jun; Tsai, Ming-Jer; Tsai, Sophia Y; Li, Wei; Foulds, Charles E; O'Malley, Bert W.
Afiliação
  • Gates LA; From the Departments of Molecular and Cellular Biology and.
  • Shi J; Division of Biostatistics, Dan L. Duncan Cancer Center.
  • Rohira AD; From the Departments of Molecular and Cellular Biology and.
  • Feng Q; From the Departments of Molecular and Cellular Biology and.
  • Zhu B; From the Departments of Molecular and Cellular Biology and.
  • Bedford MT; the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957.
  • Sagum CA; the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957.
  • Jung SY; Biochemistry and Molecular Biology.
  • Qin J; From the Departments of Molecular and Cellular Biology and.
  • Tsai MJ; Biochemistry and Molecular Biology.
  • Tsai SY; From the Departments of Molecular and Cellular Biology and.
  • Li W; From the Departments of Molecular and Cellular Biology and.
  • Foulds CE; From the Departments of Molecular and Cellular Biology and.
  • O'Malley BW; Division of Biostatistics, Dan L. Duncan Cancer Center.
J Biol Chem ; 292(35): 14456-14472, 2017 09 01.
Article em En | MEDLINE | ID: mdl-28717009
ABSTRACT
The transition from transcription initiation to elongation is a key regulatory step in gene expression, which requires RNA polymerase II (pol II) to escape promoter proximal pausing on chromatin. Although elongation factors promote pause release leading to transcription elongation, the role of epigenetic modifications during this critical transition step is poorly understood. Two histone marks on histone H3, lysine 4 trimethylation (H3K4me3) and lysine 9 acetylation (H3K9ac), co-localize on active gene promoters and are associated with active transcription. H3K4me3 can promote transcription initiation, yet the functional role of H3K9ac is much less understood. We hypothesized that H3K9ac may function downstream of transcription initiation by recruiting proteins important for the next step of transcription. Here, we describe a functional role for H3K9ac in promoting pol II pause release by directly recruiting the super elongation complex (SEC) to chromatin. H3K9ac serves as a substrate for direct binding of the SEC, as does acetylation of histone H4 lysine 5 to a lesser extent. Furthermore, lysine 9 on histone H3 is necessary for maximal pol II pause release through SEC action, and loss of H3K9ac increases the pol II pausing index on a subset of genes in HeLa cells. At select gene promoters, H3K9ac loss or SEC depletion reduces gene expression and increases paused pol II occupancy. We therefore propose that an ordered histone code can promote progression through the transcription cycle, providing new mechanistic insight indicating that SEC recruitment to certain acetylated histones on a subset of genes stimulates the subsequent release of paused pol II needed for transcription elongation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Histonas / Processamento de Proteína Pós-Traducional / Montagem e Desmontagem da Cromatina / Elongação da Transcrição Genética / Iniciação da Transcrição Genética / Lisina / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Histonas / Processamento de Proteína Pós-Traducional / Montagem e Desmontagem da Cromatina / Elongação da Transcrição Genética / Iniciação da Transcrição Genética / Lisina / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article