Your browser doesn't support javascript.
loading
Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.
Pach, E; Rodriguez, L; Verdaguer, A.
Afiliação
  • Pach E; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
  • Rodriguez L; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
  • Verdaguer A; Institut de Ciència de Materials de Barcelona ICMAB-CSIC, Campus de la UAB, E-08193 Bellaterra, Spain.
J Phys Chem B ; 122(2): 818-826, 2018 01 18.
Article em En | MEDLINE | ID: mdl-28922601
ABSTRACT
The freezing of supercooled water films on different substrates was investigated using a high-speed camera coupled to an optical microscope, obtaining details of the freezing process not described in the literature before. We observed the two well known freezing stages (fast dendritic growth and slow freezing of the water liquid left after the dendritic growth), but we separated the process into different phenomena that were studied separately two-dimensional dendrite growth on the substrate interface, vertical dendrite growth, formation and evolution of ice domains, trapping of air bubbles and freezing of the water film surface. We found all of these processes to be dependent on both the supercooling temperature and the substrate used. Ice dendrite (or ice front) growth during the first stage was found to be dependent on thermal properties of the substrate but could not be unequivocally related to them. Finally, for low supercooling, a direct relationship was observed between the morphology of the dendrites formed in the first stage, which depends on the substrate, and the roughness and the shape of the surface of the ice, when freezing of the film was completed. This opens the possibility of using surfaces and coatings to control ice morphology beyond anti-icing properties.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article