Your browser doesn't support javascript.
loading
Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range.
Keine, Christian; Rübsamen, Rudolf; Englitz, Bernhard.
Afiliação
  • Keine C; Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States.
  • Rübsamen R; Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.
  • Englitz B; Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.
Elife ; 62017 09 25.
Article em En | MEDLINE | ID: mdl-28945194
ABSTRACT
Neuronal inhibition is crucial for temporally precise and reproducible signaling in the auditory brainstem. Previously we showed that for various synthetic stimuli, spherical bushy cell (SBC) activity in the Mongolian gerbil is rendered sparser and more reliable by subtractive inhibition (Keine et al., 2016). Here, employing environmental stimuli, we demonstrate that the inhibitory gain control becomes even more effective, keeping stimulated response rates equal to spontaneous ones. However, what are the costs of this modulation? We performed dynamic stimulus reconstructions based on neural population responses for auditory nerve (ANF) input and SBC output to assess the influence of inhibition on acoustic signal representation. Compared to ANFs, reconstructions of natural stimuli based on SBC responses were temporally more precise, but the match between acoustic and represented signal decreased. Hence, for natural sounds, inhibition at SBCs plays an even stronger role in achieving sparse and reproducible neuronal activity, while compromising general signal representation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vias Auditivas / Tronco Encefálico / Inibição Neural / Neurônios Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vias Auditivas / Tronco Encefálico / Inibição Neural / Neurônios Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article