Your browser doesn't support javascript.
loading
Imaging of Skeletal Disorders Caused by Fibroblast Growth Factor Receptor Gene Mutations.
Sargar, Kiran M; Singh, Achint K; Kao, Simon C.
Afiliação
  • Sargar KM; From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110 (K.M.S.); Department of Radiology, University of Texas Health Science Center San Antonio, San Antonio, Tex (A.K.S.); and Department of Radiology, University of Iowa College of Medicine, Iowa City, Iowa (S.C.K.).
  • Singh AK; From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110 (K.M.S.); Department of Radiology, University of Texas Health Science Center San Antonio, San Antonio, Tex (A.K.S.); and Department of Radiology, University of Iowa College of Medicine, Iowa City, Iowa (S.C.K.).
  • Kao SC; From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110 (K.M.S.); Department of Radiology, University of Texas Health Science Center San Antonio, San Antonio, Tex (A.K.S.); and Department of Radiology, University of Iowa College of Medicine, Iowa City, Iowa (S.C.K.).
Radiographics ; 37(6): 1813-1830, 2017 Oct.
Article em En | MEDLINE | ID: mdl-29019756
ABSTRACT
Fibroblast growth factors and fibroblast growth factor receptors (FGFRs) play important roles in human axial and craniofacial skeletal development. FGFR1, FGFR2, and FGFR3 are crucial for both chondrogenesis and osteogenesis. Mutations in the genes encoding FGFRs, types 1-3, are responsible for various skeletal dysplasias and craniosynostosis syndromes. Many of these disorders are relatively common in the pediatric population, and diagnosis is often challenging. These skeletal disorders can be classified based on which FGFR is affected. Skeletal disorders caused by type 1 mutations include Pfeiffer syndrome (PS) and osteoglophonic dysplasia, and disorders caused by type 2 mutations include Crouzon syndrome (CS), Apert syndrome (AS), and PS. Disorders caused by type 3 mutations include achondroplasia, hypochondroplasia, thanatophoric dysplasia (TD), severe achondroplasia with developmental delay and acanthosis nigricans, Crouzonodermoskeletal syndrome, and Muenke syndrome. Most of these mutations are inherited in an autosomal dominant fashion and are gain-of-function-type mutations. Imaging plays a key role in the evaluation of these skeletal disorders. Knowledge of the characteristic imaging and clinical findings can help confirm the correct diagnosis and guide the appropriate molecular genetic tests. Some characteristics and clinical findings include premature fusion of cranial sutures and deviated broad thumbs and toes in PS; premature fusion of cranial sutures and syndactyly of the hands and feet in AS; craniosynostosis, ocular proptosis, and absence of hand and foot abnormalities in CS; rhizomelic limb shortening, caudal narrowing of the lumbar interpediculate distance, small and square iliac wings, and trident hands in achondroplasia; and micromelia, bowing of the femora, and platyspondyly in TD. ©RSNA, 2017.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças Ósseas / Receptores de Fatores de Crescimento de Fibroblastos / Mutação Tipo de estudo: Diagnostic_studies Limite: Child / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças Ósseas / Receptores de Fatores de Crescimento de Fibroblastos / Mutação Tipo de estudo: Diagnostic_studies Limite: Child / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article