Your browser doesn't support javascript.
loading
Tomato CRY1a plays a critical role in the regulation of phytohormone homeostasis, plant development, and carotenoid metabolism in fruits.
Liu, Chao-Chao; Ahammed, Golam Jalal; Wang, Guo-Ting; Xu, Chang-Jie; Chen, Kun-Song; Zhou, Yan-Hong; Yu, Jing-Quan.
Afiliação
  • Liu CC; Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
  • Ahammed GJ; Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
  • Wang GT; Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
  • Xu CJ; Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
  • Chen KS; Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
  • Zhou YH; Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
  • Yu JQ; Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
Plant Cell Environ ; 41(2): 354-366, 2018 02.
Article em En | MEDLINE | ID: mdl-29046014
ABSTRACT
Blue light photoreceptors, cryptochromes (CRYs), regulate multiple aspects of plant growth and development. However, our knowledge of CRYs is predominantly based on model plant Arabidopsis at early growth stage. In this study, we elucidated functions of CRY1a gene in mature tomato (Solanum lycopersicum) plants by using cry1a mutants and CRY1a-overexpressing lines (OE-CRY1a-1 and OE-CRY1a-2). In comparison with wild-type plants, cry1a mutants are relatively tall, accumulate low biomass, and bear more fruits, whereas OE-CRY1a plants are short stature, and they not only flower lately but also bear less fruits. RNA-seq, qRT-PCR, and LC-MS/MS analysis revealed that biosynthesis of gibberellin, cytokinin, and jasmonic acid was down-regulated by CRY1a. Furthermore, DNA replication was drastically inhibited in leaves of OE-CRY1a lines, but promoted in cry1a mutants with concomitant changes in the expression of cell cycle genes. However, CRY1a positively regulated levels of soluble sugars, phytofluene, phytoene, lycopene, and ß-carotene in the fruits. The results indicate the important role of CRY1a in plant growth and have implications for molecular interventions of CRY1a aimed at improving agronomic traits.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Carotenoides / Genes de Plantas / Solanum lycopersicum / Criptocromos / Frutas Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Carotenoides / Genes de Plantas / Solanum lycopersicum / Criptocromos / Frutas Idioma: En Ano de publicação: 2018 Tipo de documento: Article