Your browser doesn't support javascript.
loading
The Digital Slide Archive: A Software Platform for Management, Integration, and Analysis of Histology for Cancer Research.
Gutman, David A; Khalilia, Mohammed; Lee, Sanghoon; Nalisnik, Michael; Mullen, Zach; Beezley, Jonathan; Chittajallu, Deepak R; Manthey, David; Cooper, Lee A D.
Afiliação
  • Gutman DA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia. dgutman@emory.edu.
  • Khalilia M; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia.
  • Lee S; Winship Cancer Institute, Emory University, Atlanta, Georgia.
  • Nalisnik M; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia.
  • Mullen Z; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia.
  • Beezley J; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia.
  • Chittajallu DR; Kitware Incorporated, Clifton Park, New York.
  • Manthey D; Kitware Incorporated, Clifton Park, New York.
  • Cooper LAD; Kitware Incorporated, Clifton Park, New York.
Cancer Res ; 77(21): e75-e78, 2017 11 01.
Article em En | MEDLINE | ID: mdl-29092945
Tissue-based cancer studies can generate large amounts of histology data in the form of glass slides. These slides contain important diagnostic, prognostic, and biological information and can be digitized into expansive and high-resolution whole-slide images using slide-scanning devices. Effectively utilizing digital pathology data in cancer research requires the ability to manage, visualize, share, and perform quantitative analysis on these large amounts of image data, tasks that are often complex and difficult for investigators with the current state of commercial digital pathology software. In this article, we describe the Digital Slide Archive (DSA), an open-source web-based platform for digital pathology. DSA allows investigators to manage large collections of histologic images and integrate them with clinical and genomic metadata. The open-source model enables DSA to be extended to provide additional capabilities. Cancer Res; 77(21); e75-78. ©2017 AACR.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Software / Bibliotecas Digitais / Neoplasias Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Software / Bibliotecas Digitais / Neoplasias Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article