Your browser doesn't support javascript.
loading
The impact of cytokine responses in the intra- and extracellular signaling network of a traumatic injury.
Han, Alice A; Currie, Holly N; Loos, Matthew S; Scardoni, Giovanni; Miller, Julie V; Prince, Nicole; Mouch, Julia A; Boyd, Jonathan W.
Afiliação
  • Han AA; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
  • Currie HN; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
  • Loos MS; Department of Surgery, West Virginia University, Morgantown, WV, USA.
  • Scardoni G; Center for BioMedical Computing, University of Verona, Istituti Biologici, Blocco A, Strada le Grazie 8, 37134 Verona, Italy.
  • Miller JV; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
  • Prince N; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
  • Mouch JA; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
  • Boyd JW; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA. Electronic address: Jonathan.boyd@mail.wvu.edu.
Cytokine ; 106: 136-147, 2018 06.
Article em En | MEDLINE | ID: mdl-29103821
Investigations of cellular responses involved in injury and repair processes have generated valuable information contributing to the advancement of wound healing and treatments. Intra- and extracellular regulators of healing mechanisms, such as cytokines, signaling proteins, and growth factors, have been described to possess significant roles in facilitating optimal recovery. This study explored a collection of 30 spatiotemporal responses comprised of cytokines (IL-1α, IL-1ß, IL-2, IL-6, TNF-α, MIP-1α), intracellular proteins (Akt, c-Jun, CREB, ERK1/2, JNK, MEK1, p38, p53, p90RSK), phosphorylated proteins (p-Akt, p-c-Jun, p-CREB, p-ERK1/2, p-GSK-3α/ß, p-HSP27, p-IκBα, p-JNK, p-MEK1, p-p38, p-p70S6K, p-p90RSK, p-STAT2, p-STAT3), and a protease (Caspase-3), measured in skeletal muscle tissue following a traumatic injury (rodent Gustilo IIIB fracture). To optimize the analysis of context-specific data sets, a network centrality parameter approach was used to assess the impact of each response in relation to all other measured responses. This approach identified proteins that were substantially amplified and potentially central in the wound healing network by evaluation of their corresponding centrality parameter, radiality. Network analysis allowed us to distinguish the progression of healing that occurred at certain time points and regions of injury. Notably, new tissue formation was proposed to occur by 168 h post-injury in severely injured tissue, while tissue 1-cm away from the site of injury that experienced relatively minor injury appeared to exhibit signs of new tissue formation as early as 24 h post-injury. In particular, hallmarks of inflammation, cytokines IL-1ß, IL-6, and IL-2, appear to have a pronounced impact at earlier time points (0-24 h post-injury), while intracellular proteins involved in cell proliferation, differentiation, or proteolysis (c-Jun, CREB, JNK, p38, p-c-Jun; p-MEK1, p-p38, p-STAT3) are more significant at later times (24-168 h). Overall, this study demonstrates the feasibility of a network analysis approach to extract significant information and also offers a spatiotemporal visualization of the intra- and extracellular signaling responses that regulate healing mechanisms.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ferimentos e Lesões / Transdução de Sinais / Citocinas / Espaço Intracelular / Espaço Extracelular Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ferimentos e Lesões / Transdução de Sinais / Citocinas / Espaço Intracelular / Espaço Extracelular Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article