Your browser doesn't support javascript.
loading
Small dense HDLs display potent vasorelaxing activity, reflecting their elevated content of sphingosine-1-phosphate.
Perségol, Laurence; Darabi, Maryam; Dauteuille, Carolane; Lhomme, Marie; Chantepie, Sandrine; Rye, Kerry-Anne; Therond, Patrice; Chapman, M John; Salvayre, Robert; Nègre-Salvayre, Anne; Lesnik, Philippe; Monier, Serge; Kontush, Anatol.
Afiliação
  • Perségol L; University Bourgogne Franche-Comté, INSERM LNC UMR866 and Faculty of Medicine, INSERM U866-University of Bourgogne, Dijon, France.
  • Darabi M; National Institute for Health and Medical Research (INSERM), UMR-S 1166 ICAN, University of Pierre and Marie Curie-Paris 6, and AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, France.
  • Dauteuille C; National Institute for Health and Medical Research (INSERM), UMR-S 1166 ICAN, University of Pierre and Marie Curie-Paris 6, and AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, France.
  • Lhomme M; Institute of Cardiometabolism and Nutrition (ICAN), Groupe Hospitalier Pitié-Salpétrière, Paris, France.
  • Chantepie S; National Institute for Health and Medical Research (INSERM), UMR-S 1166 ICAN, University of Pierre and Marie Curie-Paris 6, and AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, France.
  • Rye KA; School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.
  • Therond P; Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, University Paris-Sud, Le Kremlin-Bicêtre Cedex, France.
  • Chapman MJ; National Institute for Health and Medical Research (INSERM), UMR-S 1166 ICAN, University of Pierre and Marie Curie-Paris 6, and AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, France.
  • Salvayre R; INSERM U1048 I2MC, Toulouse, France.
  • Nègre-Salvayre A; INSERM U1048 I2MC, Toulouse, France.
  • Lesnik P; National Institute for Health and Medical Research (INSERM), UMR-S 1166 ICAN, University of Pierre and Marie Curie-Paris 6, and AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, France.
  • Monier S; University Bourgogne Franche-Comté, INSERM LNC UMR866 and Faculty of Medicine, INSERM U866-University of Bourgogne, Dijon, France.
  • Kontush A; National Institute for Health and Medical Research (INSERM), UMR-S 1166 ICAN, University of Pierre and Marie Curie-Paris 6, and AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, France anatol.kontush@upmc.fr.
J Lipid Res ; 59(1): 25-34, 2018 01.
Article em En | MEDLINE | ID: mdl-29150495
ABSTRACT
The functional heterogeneity of HDL is attributed to its diverse bioactive components. We evaluated whether the vasodilatory effects of HDL differed across HDL subpopulations, reflecting their distinct molecular composition. The capacity of five major HDL subfractions to counteract the inhibitory effects of oxidized LDL on acetylcholine-induced vasodilation was tested in a rabbit aortic rings model. NO production, an essential pathway in endothelium-dependent vasorelaxation, was studied in simian vacuolating virus 40-transformed murine endothelial cells (SVECs). Small dense HDL3 subfractions displayed potent vasorelaxing activity (up to +31% vs. baseline, P < 0.05); in contrast, large light HDL2 did not induce aortic-ring relaxation when compared on a total protein basis. HDL3 particles were enriched with sphingosine-1-phosphate (S1P) (up to 3-fold vs. HDL2), with the highest content in HDL3b and -3c that concomitantly revealed the strongest vasorelaxing properties. NO generation was enhanced by HDL3c in SVECs (1.5-fold, P < 0.01), a phenomenon that was blocked by the S1P receptor antagonist, VPC 23019. S1P-enriched reconstituted HDL (rHDL) was a 1.8-fold (P < 0.01) more potent vasorelaxant than control rHDL in aortic rings. Small dense HDL3 particles displayed potent protective effects against oxidative stress-associated endothelium dysfunction, potentially reflecting their elevated content of S1P that might facilitate interaction with S1P receptors and ensuing NO generation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esfingosina / Vasodilatação / Lisofosfolipídeos / Lipoproteínas HDL Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esfingosina / Vasodilatação / Lisofosfolipídeos / Lipoproteínas HDL Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article