Your browser doesn't support javascript.
loading
Cation Hydration in Supercritical NaOH and HCl Aqueous Solutions.
Sahle, Christoph J; Niskanen, Johannes; Schmidt, Christian; Stefanski, Johannes; Gilmore, Keith; Forov, Yury; Jahn, Sandro; Wilke, Max; Sternemann, Christian.
Afiliação
  • Sahle CJ; European Synchrotron Radiation Facility , 71 Avenue des Martyrs, 38000 Grenoble, France.
  • Niskanen J; Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Str. 15, 12489 Berlin, Germany.
  • Schmidt C; Deutsches GeoForschungsZentrum GFZ , Section 4.3, Telegrafenberg, 14473 Potsdam, Germany.
  • Stefanski J; Institute of Geology and Mineralogy, University of Cologne , Zülpicher Strasse 49b, 50674 Köln, Germany.
  • Gilmore K; European Synchrotron Radiation Facility , 71 Avenue des Martyrs, 38000 Grenoble, France.
  • Forov Y; Fakultät Physik/DELTA, Technische Universität Dortmund , 44221 Dortmund, Germany.
  • Jahn S; Institute of Geology and Mineralogy, University of Cologne , Zülpicher Strasse 49b, 50674 Köln, Germany.
  • Wilke M; Institute of Earth and Environmental Science-Earth Science, Universität Potsdam , 14476 Potsdam, Germany.
  • Sternemann C; Fakultät Physik/DELTA, Technische Universität Dortmund , 44221 Dortmund, Germany.
J Phys Chem B ; 121(50): 11383-11389, 2017 12 21.
Article em En | MEDLINE | ID: mdl-29160070
ABSTRACT
We present a study of the local atomic environment of the oxygen atoms in the aqueous solutions of NaOH and HCl under simultaneous high-temperature and high-pressure conditions. Experimental nonresonant X-ray Raman scattering core-level spectra at the oxygen K-edge show systematic changes as a function of temperature and pressure. These systematic changes are distinct for the two different solutes and are described well by calculations within the Bethe-Salpeter formalism for snapshots from ab initio molecular dynamics simulations. The agreement between experimental and simulation results allows us to use the computations for a detailed fingerprinting analysis in an effort to elucidate the local atomic structure and hydrogen-bonding topology in these relevant solutions. We observe that both electrolytes, especially NaOH, enhance hydrogen bonding and tetrahedrality in the water structure at supercritical conditions, in particular in the vicinity of the hydration shells. This effect is accompanied with the association of the HCl and NaOH molecules at elevated temperatures.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article