Your browser doesn't support javascript.
loading
Vertical MoSe2-MoO x p-n heterojunction and its application in optoelectronics.
Chen, Xiaoshuang; Liu, Guangbo; Hu, Yunxia; Cao, Wenwu; Hu, PingAn; Hu, Wenping.
Afiliação
  • Chen X; Key Lab of Microsystem and Microstructure of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China. Department of Physics, Harbin Institute of Technology, Harbin 150080, People's Republic of China.
Nanotechnology ; 29(4): 045202, 2018 Jan 26.
Article em En | MEDLINE | ID: mdl-29176065
The hybrid n-type 2D transition-metal dichalcogenide (TMD)/p-type oxide van der Waals (vdW) heterojunction nanosheets consist of 2D layered MoSe2 (the n-type 2D material) and MoO x (the p-type oxide) which are grown on SiO2/Si substrates for the first time via chemical vapor deposition technique, displaying the regular hexagon structures with the average length dimension of sides of ∼8 µm. Vertical MoSe2-MoO x p-n heterojunctions demonstrate obviously current-rectifying characteristic, and it can be tuned via gate voltage. What is more, the photodetector based on vertical MoSe2-MoO x heterojunctions displays optimal photoresponse behavior, generating the responsivity, detectivity, and external quantum efficiency to 3.4 A W-1, 0.85 × 108 Jones, and 1665.6%, respectively, at V ds = 5 V with the light wavelength of 254 nm under 0.29 mW cm-2. These results furnish a building block on investigating the flexible and transparent properties of vdW and further optimizing the structure of the devices for better optoelectronic and electronic performance.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article