Your browser doesn't support javascript.
loading
Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves.
Scanlan, Adam B; Nguyen, Alex V; Ilina, Anna; Lasso, Andras; Cripe, Linnea; Jegatheeswaran, Anusha; Silvestro, Elizabeth; McGowan, Francis X; Mascio, Christopher E; Fuller, Stephanie; Spray, Thomas L; Cohen, Meryl S; Fichtinger, Gabor; Jolley, Matthew A.
Afiliação
  • Scanlan AB; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
  • Nguyen AV; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
  • Ilina A; Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, USA.
  • Lasso A; Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, USA.
  • Cripe L; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
  • Jegatheeswaran A; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  • Silvestro E; Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  • McGowan FX; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
  • Mascio CE; Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  • Fuller S; Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  • Spray TL; Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  • Cohen MS; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  • Fichtinger G; Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, USA.
  • Jolley MA; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA. JOLLEYM@email.chop.edu.
Pediatr Cardiol ; 39(3): 538-547, 2018 Mar.
Article em En | MEDLINE | ID: mdl-29181795
ABSTRACT
Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed "negative" molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p < 0.01). Patient-specific, 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Valva Tricúspide / Ecocardiografia Tridimensional / Impressão Tridimensional / Valva Mitral / Modelos Anatômicos Tipo de estudo: Observational_studies / Prognostic_studies Limite: Child / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Valva Tricúspide / Ecocardiografia Tridimensional / Impressão Tridimensional / Valva Mitral / Modelos Anatômicos Tipo de estudo: Observational_studies / Prognostic_studies Limite: Child / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article