Your browser doesn't support javascript.
loading
Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40.
Yang, Haijuan; Jiang, Xiaolu; Li, Buren; Yang, Hyo J; Miller, Meredith; Yang, Angela; Dhar, Ankita; Pavletich, Nikola P.
Afiliação
  • Yang H; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
  • Jiang X; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
  • Li B; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
  • Yang HJ; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
  • Miller M; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
  • Yang A; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
  • Dhar A; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
  • Pavletich NP; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
Nature ; 552(7685): 368-373, 2017 12 21.
Article em En | MEDLINE | ID: mdl-29236692
ABSTRACT
The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to nutrients, energy levels, and growth factors. It contains the atypical kinase mTOR and the RAPTOR subunit that binds to the Tor signalling sequence (TOS) motif of substrates and regulators. mTORC1 is activated by the small GTPase RHEB (Ras homologue enriched in brain) and inhibited by PRAS40. Here we present the 3.0 ångström cryo-electron microscopy structure of mTORC1 and the 3.4 ångström structure of activated RHEB-mTORC1. RHEB binds to mTOR distally from the kinase active site, yet causes a global conformational change that allosterically realigns active-site residues, accelerating catalysis. Cancer-associated hyperactivating mutations map to structural elements that maintain the inactive state, and we provide biochemical evidence that they mimic RHEB relieving auto-inhibition. We also present crystal structures of RAPTOR-TOS motif complexes that define the determinants of TOS recognition, of an mTOR FKBP12-rapamycin-binding (FRB) domain-substrate complex that establishes a second substrate-recruitment mechanism, and of a truncated mTOR-PRAS40 complex that reveals PRAS40 inhibits both substrate-recruitment sites. These findings help explain how mTORC1 selects its substrates, how its kinase activity is controlled, and how it is activated by cancer-associated mutations.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microscopia Crioeletrônica / Proteínas Adaptadoras de Transdução de Sinal / Alvo Mecanístico do Complexo 1 de Rapamicina / Proteína Enriquecida em Homólogo de Ras do Encéfalo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microscopia Crioeletrônica / Proteínas Adaptadoras de Transdução de Sinal / Alvo Mecanístico do Complexo 1 de Rapamicina / Proteína Enriquecida em Homólogo de Ras do Encéfalo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article