Your browser doesn't support javascript.
loading
Understanding Brønsted-Acid Catalyzed Monomolecular Reactions of Alkanes in Zeolite Pores by Combining Insights from Experiment and Theory.
Van der Mynsbrugge, Jeroen; Janda, Amber; Lin, Li-Chiang; Van Speybroeck, Veronique; Head-Gordon, Martin; Bell, Alexis T.
Afiliação
  • Van der Mynsbrugge J; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
  • Janda A; Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park Campus A, Technologiepark 903, 9052, Zwijnaarde, Belgium.
  • Lin LC; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
  • Van Speybroeck V; Present address: Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Head-Gordon M; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH, 43210, USA.
  • Bell AT; Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park Campus A, Technologiepark 903, 9052, Zwijnaarde, Belgium.
Chemphyschem ; 19(4): 341-358, 2018 02 19.
Article em En | MEDLINE | ID: mdl-29239509
ABSTRACT
Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (kapp ), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads-H+ ) and the intrinsic rate coefficient of the reaction (kint ) at reaction temperatures, since kapp is proportional to the product of Kads-H+ and kint . We show that Kads-H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C3 -C6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of kapp and its components, Kads-H+ and kint .
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article