Your browser doesn't support javascript.
loading
The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization.
Uebe, René; Keren-Khadmy, Noa; Zeytuni, Natalie; Katzmann, Emanuel; Navon, Yotam; Davidov, Geula; Bitton, Ronit; Plitzko, Jürgen M; Schüler, Dirk; Zarivach, Raz.
Afiliação
  • Uebe R; Department of Microbiology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
  • Keren-Khadmy N; Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
  • Zeytuni N; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
  • Katzmann E; Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
  • Navon Y; Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
  • Davidov G; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
  • Bitton R; Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
  • Plitzko JM; Department of Molecular Structural Biology, Am Klopferspitz 18, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
  • Schüler D; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
  • Zarivach R; Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
Mol Microbiol ; 107(4): 542-557, 2018 02.
Article em En | MEDLINE | ID: mdl-29243866
ABSTRACT
Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe3 O4 ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi-disciplinary approach to define the role of MamB during magnetosome formation. Using site-directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo-electron tomography, we show that MamB is most likely an active magnetosome-directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport-independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C-terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Magnetospirillum / Óxido Ferroso-Férrico / Magnetossomos / Biomineralização Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Magnetospirillum / Óxido Ferroso-Férrico / Magnetossomos / Biomineralização Idioma: En Ano de publicação: 2018 Tipo de documento: Article