Your browser doesn't support javascript.
loading
Co9S8@MoS2 Core-Shell Heterostructures as Trifunctional Electrocatalysts for Overall Water Splitting and Zn-Air Batteries.
Bai, Jinman; Meng, Tao; Guo, Donglei; Wang, Shuguang; Mao, Baoguang; Cao, Minhua.
Afiliação
  • Bai J; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China.
  • Meng T; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China.
  • Guo D; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China.
  • Wang S; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China.
  • Mao B; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China.
  • Cao M; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China.
ACS Appl Mater Interfaces ; 10(2): 1678-1689, 2018 Jan 17.
Article em En | MEDLINE | ID: mdl-29265801
ABSTRACT
The development of efficient non-noble-metal electrocatalysts is of critical importance for clean energy conversion systems, such as fuel cells, metal-air batteries, and water electrolysis. Herein, uniform Co9S8@MoS2 core-shell heterostructures have been successfully prepared via a solvothermal approach, followed by an annealing treatment. Transmission electron microscopy, X-ray absorption near-edge structure, and X-ray photoelectron spectroscopy measurements reveal that the core-shell structure of Co9S8@MoS2 can introduce heterogeneous nanointerface between Co9S8 and MoS2, which can deeply influence its charge state to boost the electrocatalytic performances. Besides, due to the core-shell structure that can promote the synergistic effect of Co9S8 and MoS2 and provide abundant catalytically active sites, Co9S8@MoS2 exhibits a superior hydrogen evolution reaction performance with a small overpotential of 143 mV at 10 mA cm-2 and a small Tafel slope value of 117 mV dec-1 under alkaline solution. Meanwhile, the activity of Co9S8@MoS2 toward oxygen evolution reaction is also impressive with a low operating potential (∼1.57 V vs reversible hydrogen electrode) at 10 mA cm-2. By using Co9S8@MoS2 catalyst for full water splitting, an alkaline electrolyzer affords a cell voltage as low as 1.67 V at a current density of 10 mA cm-2. Also, Co9S8@MoS2 reveals robust oxygen reduction reaction performance, making it an excellent catalyst for Zn-air batteries with a long lifetime (20 h). This work provides a new means for the development of multifunctional electrocatalysts of non-noble metals for the highly demanded electrochemical energy technologies.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article