Your browser doesn't support javascript.
loading
Perspective: Maximum caliber is a general variational principle for dynamical systems.
Dixit, Purushottam D; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A.
Afiliação
  • Dixit PD; Department of Systems Biology, Columbia University, New York, New York 10032, USA.
  • Wagoner J; Laufer Center for Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA.
  • Weistuch C; Laufer Center for Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA.
  • Pressé S; Department of Physics and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, USA.
  • Ghosh K; Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208, USA.
  • Dill KA; Laufer Center for Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA.
J Chem Phys ; 148(1): 010901, 2018 Jan 07.
Article em En | MEDLINE | ID: mdl-29306272
We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics-such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production-are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article