Your browser doesn't support javascript.
loading
Monitoring the Orientational Changes of Alamethicin during Incorporation into Bilayer Lipid Membranes.
Forbrig, Enrico; Staffa, Jana K; Salewski, Johannes; Mroginski, Maria Andrea; Hildebrandt, Peter; Kozuch, Jacek.
Afiliação
  • Forbrig E; Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
  • Staffa JK; Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
  • Salewski J; Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
  • Mroginski MA; Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
  • Hildebrandt P; Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
  • Kozuch J; Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
Langmuir ; 34(6): 2373-2385, 2018 02 13.
Article em En | MEDLINE | ID: mdl-29353482
ABSTRACT
Antimicrobial peptides (AMPs) are the first line of defense after contact of an infectious invader, for example, bacterium or virus, with a host and an integral part of the innate immune system of humans. Their broad spectrum of biological functions ranges from cell membrane disruption over facilitation of chemotaxis to interaction with membrane-bound or intracellular receptors, thus providing novel strategies to overcome bacterial resistances. Especially, the clarification of the mechanisms and dynamics of AMP incorporation into bacterial membranes is of high interest, and different mechanistic models are still under discussion. In this work, we studied the incorporation of the peptaibol alamethicin (ALM) into tethered bilayer lipid membranes on electrodes in combination with surface-enhanced infrared absorption (SEIRA) spectroscopy. This approach allows monitoring the spontaneous and potential-induced ion channel formation of ALM in situ. The complex incorporation kinetics revealed a multistep mechanism that points to peptide-peptide interactions prior to penetrating the membrane and adopting the transmembrane configuration. On the basis of the anisotropy of the backbone amide I and II infrared absorptions determined by density functional theory calculations, we employed a mathematical model to evaluate ALM reorientations monitored by SEIRA spectroscopy. Accordingly, ALM was found to adopt inclination angles of ca. 69°-78° and 21° in its interfacially adsorbed and transmembrane incorporated states, respectively. These orientations can be stabilized efficiently by the dipolar interaction with lipid head groups or by the application of a potential gradient. The presented potential-controlled mechanistic study suggests an N-terminal integration of ALM into membranes as monomers or parallel oligomers to form ion channels composed of parallel-oriented helices, whereas antiparallel oligomers are barred from intrusion.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Alameticina / Bicamadas Lipídicas Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Alameticina / Bicamadas Lipídicas Idioma: En Ano de publicação: 2018 Tipo de documento: Article