Your browser doesn't support javascript.
loading
Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation.
Hao, Wangping; Han, Jie; Chu, Yun; Huang, Lei; Sun, Jie; Zhuang, Yan; Li, Xiaoran; Ma, Hongwei; Chen, Yanyan; Dai, Jianwu.
Afiliação
  • Hao W; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
  • Han J; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Xi'an Jiaotong University, Xi'an, 710049, China.
  • Chu Y; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; University of Science and Technology of China, Hefei, 230026, China.
  • Huang L; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Xi'an Jiaotong University, Xi'an, 710049, China.
  • Sun J; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Cen
  • Zhuang Y; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
  • Li X; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
  • Ma H; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
  • Chen Y; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. Electronic address: yychen2006@sinano.ac.cn.
  • Dai J; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Scie
Biomaterials ; 161: 106-116, 2018 04.
Article em En | MEDLINE | ID: mdl-29421547
ABSTRACT
Extensive studies have been performed to understand how the mechanical properties of a stem cell's microenvironment influence its behaviors. Supported lipid bilayers (SLBs), a well-known biomimetic platform, have been used to mimic the dynamic characteristics of the extracellular matrix (ECM) because of their fluidity. However, the effect of the fluidity of SLBs on stem cell fate is unknown. We constructed SLBs with different fluidities to explore the influence of fluidity on the differentiation of neural stem cells (NSCs). The results showed that the behavior of NSCs was highly dependent on the fluidity of SLBs. Low fluidity resulted in enhanced focal adhesion formation, a dense network of stress fibers, stretched and elongated cellular morphology and increased neuronal differentiation, while high fluidity led to less focal adhesion formation, immature stress fibers, round cellular morphology and more astrocyte differentiation. Mechanistic studies revealed that low fluidity may have enhanced focal adhesion formation, which activated FAK-MEK/ERK signaling pathways and ultimately promoted neuronal differentiation of NSCs. This work provides a strategy for manipulating the dynamic matrix surface for the development of culture substrates and tissue-engineered scaffolds, which may aid the understanding of how the dynamic ECM influences stem cell behaviors as well as improve the efficacy of stem cell applications.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adesões Focais / Células-Tronco Neurais / Bicamadas Lipídicas Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adesões Focais / Células-Tronco Neurais / Bicamadas Lipídicas Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article