Your browser doesn't support javascript.
loading
Muscle microRNA signatures as biomarkers of disease progression in amyotrophic lateral sclerosis.
Si, Ying; Cui, Xianqin; Crossman, David K; Hao, Jiaying; Kazamel, Mohamed; Kwon, Yuri; King, Peter H.
Afiliação
  • Si Y; Department of Neurology, University of Alabama, Birmingham, AL 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL 35295, USA.
  • Cui X; Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35295, USA.
  • Crossman DK; Department of Genetics, University of Alabama, Birmingham, AL 35294, USA.
  • Hao J; Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35295, USA.
  • Kazamel M; Department of Neurology, University of Alabama, Birmingham, AL 35294, USA.
  • Kwon Y; Department of Neurology, University of Alabama, Birmingham, AL 35294, USA.
  • King PH; Department of Neurology, University of Alabama, Birmingham, AL 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL 35295, USA; Department of Genetics, University of Alabama, Birmingham, AL 35294, USA. Electronic address: phking@uabmc.edu.
Neurobiol Dis ; 114: 85-94, 2018 06.
Article em En | MEDLINE | ID: mdl-29486297
ABSTRACT
ALS is a fatal neurodegenerative disorder of motor neurons leading to progressive atrophy and weakness of muscles. Some of the earliest pathophysiological changes occur at the level of skeletal muscle and the neuromuscular junction. We previously identified distinct mRNA patterns, including members of the Smad and TGF-ß family, that emerge in muscle tissue at the earliest (pre-clinical) stages. These patterns track disease progression in the mutant SOD1 mouse and are present in human ALS muscle. Because miRNAs play a direct regulatory role in mRNA expression, we hypothesized in this study that there would be distinct miRNA patterns in ALS muscle appearing in early stages that could track disease progression. We performed next-generation miRNA sequencing on muscle samples from G93A SOD1 mice at early (pre-clinical) and late (symptomatic) stages, and identified distinct miRNA patterns at both stages with some overlap. An Ingenuity Pathway Analysis predicted effects on a number of pathways relevant to ALS including TGF-ß signaling, axon guidance signaling, and mitochondrial function. A subset of miRNAs was validated in the G93A SOD1 mouse at four stages of disease, and several appeared to track disease progression, including miR-206. We assessed these miRNAs in a large cohort of human ALS and disease control samples and found that some had similar changes but were not specific for ALS. Surprisingly, miR-206 levels did not change overall compared to normal controls, but did correlate with changes in strength of the muscle biopsied. In summary, we identified distinct miRNA patterns in ALS muscle that reflected disease stage which could potentially be used as biomarkers of disease activity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Superóxido Dismutase / Músculo Esquelético / Progressão da Doença / MicroRNAs / Esclerose Lateral Amiotrófica Tipo de estudo: Guideline / Prognostic_studies Limite: Adult / Aged / Aged80 / Animals / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Superóxido Dismutase / Músculo Esquelético / Progressão da Doença / MicroRNAs / Esclerose Lateral Amiotrófica Tipo de estudo: Guideline / Prognostic_studies Limite: Adult / Aged / Aged80 / Animals / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2018 Tipo de documento: Article