Your browser doesn't support javascript.
loading
Mapping the Allosteric Action of Antagonists A740003 and A438079 Reveals a Role for the Left Flipper in Ligand Sensitivity at P2X7 Receptors.
Allsopp, Rebecca C; Dayl, Sudad; Bin Dayel, Anfal; Schmid, Ralf; Evans, Richard J.
Afiliação
  • Allsopp RC; Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.).
  • Dayl S; Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.).
  • Bin Dayel A; Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.).
  • Schmid R; Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.).
  • Evans RJ; Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.) rje6@le.ac
Mol Pharmacol ; 93(5): 553-562, 2018 05.
Article em En | MEDLINE | ID: mdl-29535152
ABSTRACT
P2X7 receptor (P2X7R) activation requires ∼100-fold higher concentrations of ATP than other P2X receptor (P2XR) subtypes. Such high levels are found during cellular stress, and P2X7Rs consequently contribute to a range of pathophysiological conditions. We have used chimeric and mutant P2X7Rs, coupled with molecular modeling, to produce a validated model of the binding mode of the subtype-selective antagonist A438079 at an intersubunit allosteric site. Within the allosteric site large effects on antagonist action were found for point mutants of residues F88A, D92A, F95A, and F103A that were conserved or similar between sensitive/insensitive P2XR subtypes, suggesting that these side-chain interactions were not solely responsible for high-affinity antagonist binding. Antagonist sensitivity was increased with mutations that remove the bulk of side chains around the center of the binding pocket, suggesting that the dimensions of the pocket make a significant contribution to selectivity. Chimeric receptors swapping the left flipper (around the orthosteric site) reduced both ATP and antagonist sensitivity. Point mutations within this region highlighted the contribution of a P2X7R-specific aspartic acid residue (D280) that modeling suggests forms a salt bridge with the lower body region of the receptor. The D280A mutant removing this charge increased ATP potency 15-fold providing a new insight into the low ATP sensitivity of the P2X7R. The ortho- and allosteric binding sites form either side of the ß-strand Y291-E301 adjacent to the left flipper. This structural linking may explain the contribution of the left flipper to both agonist and antagonist action.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Piridinas / Quinolinas / Tetrazóis / Receptores Purinérgicos P2X7 / Antagonistas do Receptor Purinérgico P2X / Acetamidas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Piridinas / Quinolinas / Tetrazóis / Receptores Purinérgicos P2X7 / Antagonistas do Receptor Purinérgico P2X / Acetamidas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article