Integrated molecular imaging reveals tissue heterogeneity driving host-pathogen interactions.
Sci Transl Med
; 10(432)2018 03 14.
Article
em En
| MEDLINE
| ID: mdl-29540616
Diseases are characterized by distinct changes in tissue molecular distribution. Molecular analysis of intact tissues traditionally requires preexisting knowledge of, and reagents for, the targets of interest. Conversely, label-free discovery of disease-associated tissue analytes requires destructive processing for downstream identification platforms. Tissue-based analyses therefore sacrifice discovery to gain spatial distribution of known targets or sacrifice tissue architecture for discovery of unknown targets. To overcome these obstacles, we developed a multimodality imaging platform for discovery-based molecular histology. We apply this platform to a model of disseminated infection triggered by the pathogen Staphylococcus aureus, leading to the discovery of infection-associated alterations in the distribution and abundance of proteins and elements in tissue in mice. These data provide an unbiased, three-dimensional analysis of how disease affects the molecular architecture of complex tissues, enable culture-free diagnosis of infection through imaging-based detection of bacterial and host analytes, and reveal molecular heterogeneity at the host-pathogen interface.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Staphylococcus aureus
/
Imagem Molecular
Limite:
Animals
Idioma:
En
Ano de publicação:
2018
Tipo de documento:
Article