Your browser doesn't support javascript.
loading
Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.
Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim.
Afiliação
  • Calderon CB; Centre for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute, Faculté de Psychologie et Sciences de l'Éducation, Université Libre de Bruxelles, Brussels, Belgium.
  • Van Opstal F; Department of Experimental Psychology, Ghent University, Ghent, Belgium.
  • Peigneux P; Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.
  • Verguts T; Centre for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute, Faculté de Psychologie et Sciences de l'Éducation, Université Libre de Bruxelles, Brussels, Belgium.
  • Gevers W; UR2NF-Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Brussels, Belgium.
Front Hum Neurosci ; 12: 93, 2018.
Article em En | MEDLINE | ID: mdl-29593518
ABSTRACT
Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article