Your browser doesn't support javascript.
loading
Electrostrain in excess of 1% in polycrystalline piezoelectrics.
Narayan, Bastola; Malhotra, Jaskaran Singh; Pandey, Rishikesh; Yaddanapudi, Krishna; Nukala, Pavan; Dkhil, Brahim; Senyshyn, Anatoliy; Ranjan, Rajeev.
Afiliação
  • Narayan B; Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
  • Malhotra JS; Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
  • Pandey R; Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
  • Yaddanapudi K; Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
  • Nukala P; Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS), CentraleSupélec, CNRS-UMR8580, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Dkhil B; Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS), CentraleSupélec, CNRS-UMR8580, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Senyshyn A; Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Garching b. München, Germany.
  • Ranjan R; Department of Materials Engineering, Indian Institute of Science, Bangalore, India. rajeev@iisc.ac.in.
Nat Mater ; 17(5): 427-431, 2018 05.
Article em En | MEDLINE | ID: mdl-29632408
ABSTRACT
Piezoelectric actuators transform electrical energy into mechanical energy, and because of their compactness, quick response time and accurate displacement, they are sought after in many applications. Polycrystalline piezoelectric ceramics are technologically more appealing than single crystals due to their simpler and less expensive processing, but have yet to display electrostrain values that exceed 1%. Here we report a material design strategy wherein the efficient switching of ferroelectric-ferroelastic domains by an electric field is exploited to achieve a high electrostrain value of 1.3% in a pseudo-ternary ferroelectric alloy system, BiFeO3-PbTiO3-LaFeO3. Detailed structural investigations reveal that this electrostrain is associated with a combination of several factors a large spontaneous lattice strain of the piezoelectric phase, domain miniaturization, a low-symmetry ferroelectric phase and a very large reverse switching of the non-180° domains. This insight for the design of a new class of polycrystalline piezoceramics with high electrostrains may be useful to develop alternatives to costly single-crystal actuators.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article