Your browser doesn't support javascript.
loading
Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma.
Tong, Wing Yin; Alnakhli, Mohammed; Bhardwaj, Richa; Apostolou, Sinoula; Sinha, Sougata; Fraser, Cara; Kuchel, Tim; Kuss, Bryone; Voelcker, Nicolas H.
Afiliação
  • Tong WY; Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
  • Alnakhli M; Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia.
  • Bhardwaj R; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia.
  • Apostolou S; School of Medicine, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia.
  • Sinha S; Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia.
  • Fraser C; School of Medicine, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia.
  • Kuchel T; Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia.
  • Kuss B; South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.
  • Voelcker NH; South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.
J Nanobiotechnology ; 16(1): 38, 2018 Apr 13.
Article em En | MEDLINE | ID: mdl-29653579
BACKGROUND: Multidrug resistance-associated protein 1 (MRP1) overexpression plays a major role in chemoresistance in glioblastoma multiforme (GBM) contributing to its notorious deadly nature. Although MRP1-siRNA transfection to GBM in vitro has been shown to sensitise the cells to drug, MRP1 silencing in vivo and the phenotypic influence on the tumour and normal tissues upon MRP1 down-regulation have not been established. Here, porous silicon nanoparticles (pSiNPs) that enable high-capacity loading and delivery of siRNA are applied in vitro and in vivo. RESULT: We established pSiNPs with polyethyleneimine (PEI) capping that enables high-capacity loading of siRNA (92 µg of siRNA/mg PEI-pSiNPs), and optimised release profile (70% released between 24 and 48 h). These pSiNPs are biocompatible, and demonstrate cellular uptake and effective knockdown of MRP1 expression in GBM by 30%. Also, siRNA delivery was found to significantly reduce GBM proliferation as an associated effect. This effect is likely mediated by the attenuation of MRP1 transmembrane transport, followed by cell cycle arrest. MRP1 silencing in GBM tumour using MRP1-siRNA loaded pSiNPs was demonstrated in mice (82% reduction at the protein level 48 h post-injection), and it also produced antiproliferative effect in GBM by reducing the population of proliferative cells. These results indicate that in vitro observations are translatable in vivo. No histopathological signs of acute damage were observed in other MRP1-expressing organs despite collateral downregulations. CONCLUSIONS: This study proposes the potential of efficient MRP1-siRNA delivery by using PEI-capped pSiNPs in achieving a dual therapeutic role of directly attenuating the growth of GBM while sensitising residual tumour cells to the effects of chemotherapy post-resection.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polietilenoimina / Silício / Glioblastoma / Inativação Gênica / Proteínas Associadas à Resistência a Múltiplos Medicamentos / RNA Interferente Pequeno / Nanopartículas Limite: Animals / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polietilenoimina / Silício / Glioblastoma / Inativação Gênica / Proteínas Associadas à Resistência a Múltiplos Medicamentos / RNA Interferente Pequeno / Nanopartículas Limite: Animals / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article