Your browser doesn't support javascript.
loading
Synaptic nanomodules underlie the organization and plasticity of spine synapses.
Hruska, Martin; Henderson, Nathan; Le Marchand, Sylvain J; Jafri, Haani; Dalva, Matthew B.
Afiliação
  • Hruska M; Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
  • Henderson N; Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
  • Le Marchand SJ; Bio-Imaging Center, University of Delaware, Newark, DE, USA.
  • Jafri H; Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
  • Dalva MB; Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA. matthew.dalva@jefferson.edu.
Nat Neurosci ; 21(5): 671-682, 2018 05.
Article em En | MEDLINE | ID: mdl-29686261
ABSTRACT
Experience results in long-lasting changes in dendritic spine size, yet how the molecular architecture of the synapse responds to plasticity remains poorly understood. Here a combined approach of multicolor stimulated emission depletion microscopy (STED) and confocal imaging in rat and mouse demonstrates that structural plasticity is linked to the addition of unitary synaptic nanomodules to spines. Spine synapses in vivo and in vitro contain discrete and aligned subdiffraction modules of pre- and postsynaptic proteins whose number scales linearly with spine size. Live-cell time-lapse super-resolution imaging reveals that NMDA receptor-dependent increases in spine size are accompanied both by enhanced mobility of pre- and postsynaptic modules that remain aligned with each other and by a coordinated increase in the number of nanomodules. These findings suggest a simplified model for experience-dependent structural plasticity relying on an unexpectedly modular nanomolecular architecture of synaptic proteins.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Espinhas Dendríticas / Plasticidade Neuronal Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sinapses / Espinhas Dendríticas / Plasticidade Neuronal Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article