Your browser doesn't support javascript.
loading
NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity.
Rajgor, Dipen; Sanderson, Thomas M; Amici, Mascia; Collingridge, Graham L; Hanley, Jonathan G.
Afiliação
  • Rajgor D; Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, UK.
  • Sanderson TM; Centre for Synaptic Plasticity and School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
  • Amici M; Centre for Synaptic Plasticity and School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
  • Collingridge GL; Centre for Synaptic Plasticity and School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
  • Hanley JG; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
EMBO J ; 37(11)2018 06 01.
Article em En | MEDLINE | ID: mdl-29712715
ABSTRACT
MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins to form the RNA-induced silencing complex (RISC), underpinning a powerful mechanism for fine-tuning protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by modulating the translation of proteins involved in dendritic spine morphogenesis or synaptic transmission. However, it is unknown how NMDAR stimulation stimulates RISC activity to rapidly repress translation of synaptic proteins. We show that NMDAR stimulation transiently increases Akt-dependent phosphorylation of Ago2 at S387, which causes an increase in binding to GW182 and a rapid increase in translational repression of LIMK1 via miR-134. Furthermore, NMDAR-dependent down-regulation of endogenous LIMK1 translation in dendrites and dendritic spine shrinkage requires phospho-regulation of Ago2 at S387. AMPAR trafficking and hippocampal LTD do not involve S387 phosphorylation, defining this mechanism as a specific pathway for structural plasticity. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression to control dendritic spine morphology.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de N-Metil-D-Aspartato / MicroRNAs / Quinases Lim / Proteínas Argonautas Limite: Animals / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de N-Metil-D-Aspartato / MicroRNAs / Quinases Lim / Proteínas Argonautas Limite: Animals / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article