Your browser doesn't support javascript.
loading
Tunneling explains efficient electron transport via protein junctions.
Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David.
Afiliação
  • Fereiro JA; Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Yu X; Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel; xi.yu@tju.edu.cn Israel.pecht@weizmann.ac.il mudi.sheves@weizmann.ac.il juancarlos.cuevas@uam.es david.cahen@weizmann.ac.il.
  • Pecht I; Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; xi.yu@tju.edu.cn Israel.pecht@weizmann.ac.il mudi.sheves@weizmann.ac.il juancarlos.cuevas@uam.es david.cahen@weizmann.ac.il.
  • Sheves M; Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel; xi.yu@tju.edu.cn Israel.pecht@weizmann.ac.il mudi.sheves@weizmann.ac.il juancarlos.cuevas@uam.es david.cahen@weizmann.ac.il.
  • Cuevas JC; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain; xi.yu@tju.edu.cn Israel.pecht@weizmann.ac.il mudi.sheves@weizmann.ac.il juancarlos.cuevas@uam.es david.cahen@weizmann.ac.il.
  • Cahen D; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Proc Natl Acad Sci U S A ; 115(20): E4577-E4583, 2018 05 15.
Article em En | MEDLINE | ID: mdl-29712853
ABSTRACT
Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cobre / Elétrons / Metaloproteínas / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cobre / Elétrons / Metaloproteínas / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article