Divergent effects of strontium and calcium-sensing receptor positive allosteric modulators (calcimimetics) on human osteoclast activity.
Br J Pharmacol
; 175(21): 4095-4108, 2018 11.
Article
em En
| MEDLINE
| ID: mdl-29714810
BACKGROUND AND PURPOSE: Strontium ranelate, a drug approved and until recently used for the treatment of osteoporosis, mediates its effects on bone at least in part via the calcium-sensing (CaS) receptor. However, it is not known whether bone-targeted CaS receptor positive allosteric modulators (PAMs; calcimimetics) represent an alternative (or adjunctive) therapy to strontium (Sr2+ o ). EXPERIMENTAL APPROACH: We assessed three structurally distinct calcimimetics [cinacalcet, AC-265347 and a benzothiazole tri-substituted urea (BTU-compound 13)], alone and in combination with extracellular calcium (Ca2+ o ) or Sr2+ o , in G protein-dependent signalling assays and trafficking experiments in HEK293 cells and their effects on cell differentiation, tartrate-resistant acid phosphatase (TRAP) activity and hydroxyapatite resorption assays in human blood-derived osteoclasts. KEY RESULTS: Sr2+ o activated CaS receptor-dependent signalling in HEK293 cells in a similar manner to Ca2+ o , and inhibited the maturation, TRAP expression and hydroxyapatite resorption capacity of human osteoclasts. Calcimimetics potentiated Ca2+ o - and Sr2+ o -mediated CaS receptor signalling in HEK293 cells with distinct biased profiles, and only cinacalcet chaperoned an endoplasmic reticulum-retained CaS mutant receptor to the cell surface in HEK293 cells, indicative of a conformational state different from that engendered by AC-265347 and BTU-compound 13. Intriguingly, only cinacalcet modulated human osteoclast function, reducing TRAP activity and profoundly inhibiting resorption. CONCLUSION AND IMPLICATIONS: Although AC-265347 and BTU-compound 13 potentiated Ca2+ o - and Sr2+ o -induced CaS receptor activation, they neither replicated nor potentiated the ability of Sr2+ o to inhibit human osteoclast function. In contrast, the FDA-approved calcimimetic, cinacalcet, inhibited osteoclast TRAP activity and hydroxyapatite resorption, which may contribute to its clinical effects on bone mineral density LINKED ARTICLES: This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Osteoclastos
/
Estrôncio
/
Receptores de Detecção de Cálcio
/
Calcimiméticos
/
Cinacalcete
Limite:
Humans
Idioma:
En
Ano de publicação:
2018
Tipo de documento:
Article