Your browser doesn't support javascript.
loading
Species distribution modeling based on the automated identification of citizen observations.
Botella, Christophe; Joly, Alexis; Bonnet, Pierre; Monestiez, Pascal; Munoz, François.
Afiliação
  • Botella C; Institut national de recherche en informatique et en automatique (INRIA) Sophia-Antipolis, ZENITH team Laboratory of Informatics, Robotics and Microelectronics-Joint Research Unit 5506-CC 477, 161 rue Ada, 34095 Montpellier CEDEX 5 France.
  • Joly A; Institut National de la Recherche Agronomique (INRA) Joint Research Unit Botanique et modélisation de l'architecture des plantes et des végétations (UMR AMAP) F-34398 Montpellier France.
  • Bonnet P; AMAP Université de Montpellier Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) French National Center for Scientific Research INRA, IRD Montpellier France.
  • Monestiez P; BioSP INRA, Site Agroparc 84914 Avignon France.
  • Munoz F; Institut national de recherche en informatique et en automatique (INRIA) Sophia-Antipolis, ZENITH team Laboratory of Informatics, Robotics and Microelectronics-Joint Research Unit 5506-CC 477, 161 rue Ada, 34095 Montpellier CEDEX 5 France.
Appl Plant Sci ; 6(2): e1029, 2018 Feb.
Article em En | MEDLINE | ID: mdl-29732259
PREMISE OF THE STUDY: A species distribution model computed with automatically identified plant observations was developed and evaluated to contribute to future ecological studies. METHODS: We used deep learning techniques to automatically identify opportunistic plant observations made by citizens through a popular mobile application. We compared species distribution modeling of invasive alien plants based on these data to inventories made by experts. RESULTS: The trained models have a reasonable predictive effectiveness for some species, but they are biased by the massive presence of cultivated specimens. DISCUSSION: The method proposed here allows for fine-grained and regular monitoring of some species of interest based on opportunistic observations. More in-depth investigation of the typology of the observations and the sampling bias should help improve the approach in the future.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research Idioma: En Ano de publicação: 2018 Tipo de documento: Article