Your browser doesn't support javascript.
loading
Exploring the inhibition mechanism on HIF-2 by inhibitor PT2399 and 0X3 using molecular dynamics simulations.
Sun, Dong-Ru; Wang, Zhi-Jun; Zheng, Qing-Chuan; Zhang, Hong-Xing.
Afiliação
  • Sun DR; Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun, 130023, People's Republic of China.
  • Wang ZJ; The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
  • Zheng QC; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130023, People's Republic of China.
  • Zhang HX; Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun, 130023, People's Republic of China.
J Mol Recognit ; 31(10): e2730, 2018 10.
Article em En | MEDLINE | ID: mdl-29797434
ABSTRACT
Targeting transcription factors HIF-2 is currently considered to be the most direct way for the therapy of clear cell renal cell carcinoma. The preclinical inhibitor PT2399 and artificial inhibitor 0X3 have been identified as promising on-target inhibitors to inhibit the heterodimerization of HIF-2. However, the inhibition mechanism of PT2399 and 0X3 on HIF-2 remains unclear. To this end, molecular dynamics (MD) simulations and molecular docking were applied to investigate the effects of 2 inhibitors on structural motifs and heterodimerization of HIF-2. Our simulation results reveal that the binding of inhibitors disrupts the crucial hydrogen bond and hydrophobic interactions of interdomain of HIF-2 heterodimer due to the local conformational changes of binding interface, confirming the hypothesis that the perturbation of few residues is sufficient to disrupt the heterodimerization of HIF-2. In addition, it can be found that PT2399 with dominant substituents (cyano, fluorine, sulfuryl, and hydroxyl) is more preferred than 0X3 as HIF-2 inhibitor and these substituents play a crucial role in involving more hydrogen bond interactions with residues of interface and then cause the larger structural change of protein. This study may provide a deeper atomic-level insight into the effect of on-target inhibitors on HIF-2 heterodimer, which is expected to contribute to further rational design of effective clear cell renal cell carcinoma drugs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sulfonas / Fatores de Transcrição Hélice-Alça-Hélice Básicos / Simulação de Dinâmica Molecular / Indanos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sulfonas / Fatores de Transcrição Hélice-Alça-Hélice Básicos / Simulação de Dinâmica Molecular / Indanos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article