Your browser doesn't support javascript.
loading
Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate.
Field, Erin K; Blaskovich, John P; Peyton, Brent M; Gerlach, Robin.
Afiliação
  • Field EK; Department of Biology, East Carolina University, Greenville, NC, 27858, United States; Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States. Electronic address: fielde14@ecu.edu.
  • Blaskovich JP; Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, United States.
  • Peyton BM; Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, United States.
  • Gerlach R; Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, United States. Electronic address: robin_g@biofilm.montana.edu.
J Hazard Mater ; 355: 162-169, 2018 08 05.
Article em En | MEDLINE | ID: mdl-29800910
ABSTRACT
Arthrobacter spp. are widespread in soil systems and well-known for their Cr(VI) reduction capabilities making them attractive candidates for in situ bioremediation efforts. Cellulose drives carbon flow in soil systems; yet, most laboratory studies evaluate Arthrobacter-Cr(VI) interactions solely with nutrient-rich media or glucose. This study aims to determine how various cellulose degradation products and biostimulation substrates influence Cr(VI) toxicity, reduction, and microbial growth of an environmental Arthrobacter sp. isolate. Laboratory culture-based studies suggest there is a carbon-dependent Cr(VI) toxicity mechanism that affects subsequent Cr(VI) reduction by strain LLW01. Strain LLW01 could only grow in the presence of, and reduce, 50 µM Cr(VI) when glucose or lactate were provided. Compared to lactate, Cr(VI) was at least 30-fold and 10-fold more toxic when ethanol or butyrate was the sole carbon source, respectively. The addition of sulfate mitigated toxicity somewhat, but had no effect on the extent of Cr(VI) reduction. Cell viability studies indicated that a small fraction of cells were viable after 8 days suggesting cell growth and subsequent Cr(VI) reduction may resume. These results suggest when designing bioremediation strategies with Arthrobacter spp. such as strain LLW01, carbon sources such as glucose and lactate should be considered over ethanol and butyrate.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arthrobacter / Cromo Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arthrobacter / Cromo Idioma: En Ano de publicação: 2018 Tipo de documento: Article