Your browser doesn't support javascript.
loading
Global dynamics for switching systems and their extensions by linear differential equations.
Huttinga, Zane; Cummins, Bree; Gedeon, Tomás; Mischaikow, Konstantin.
Afiliação
  • Huttinga Z; Department of Mathematical Sciences, Montana State University, Bozeman, MT 59715.
  • Cummins B; Department of Mathematical Sciences, Montana State University, Bozeman, MT 59715.
  • Gedeon T; Department of Mathematical Sciences, Montana State University, Bozeman, MT 59715.
  • Mischaikow K; Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghusen Rd, Piscataway, New Jersey 08854-8019, USA.
Physica D ; 367: 19-37, 2018 Mar 15.
Article em En | MEDLINE | ID: mdl-29867284
ABSTRACT
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article