Your browser doesn't support javascript.
loading
Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty.
Gao, Yong; Wu, Meiqin; Zhang, Menjiao; Jiang, Wei; Liang, Enxing; Zhang, Dongping; Zhang, Changquan; Xiao, Ning; Chen, Jianmin.
Afiliação
  • Gao Y; Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou University, 88 South University Ave, Yangzhou, 225009, Jiangsu, China.
  • Wu M; Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou University, 88 South University Ave, Yangzhou, 225009, Jiangsu, China.
  • Zhang M; Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou University, 88 South University Ave, Yangzhou, 225009, Jiangsu, China.
  • Jiang W; Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou University, 88 South University Ave, Yangzhou, 225009, Jiangsu, China.
  • Liang E; Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou University, 88 South University Ave, Yangzhou, 225009, Jiangsu, China.
  • Zhang D; Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou University, 88 South University Ave, Yangzhou, 225009, Jiangsu, China.
  • Zhang C; Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou University, 88 South University Ave, Yangzhou, 225009, Jiangsu, China.
  • Xiao N; Lixiahe Region Agricultural Scientific Research Institute of Jiangsu, Yangzhou, 225009, Jiangsu, China.
  • Chen J; Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou University, 88 South University Ave, Yangzhou, 225009, Jiangsu, China. jmchen@yzu.edu.cn.
Plant Mol Biol ; 97(4-5): 311-323, 2018 Jul.
Article em En | MEDLINE | ID: mdl-29869742
ABSTRACT
KEY MESSAGE ZmPIF3 plays an important role in ABA-mediated regulation of stomatal closure in the control of water loss, and can improve both drought tolerance and did not affect the grain yield in the transgenic rice. Phytochrome-interacting factors (PIFs) are a subfamily of basic helix-loop-helix (bHLH) transcription factors and play important roles in regulating plant growth and development. In our previous study, overexpression of a maize PIFs family gene, ZmPIF3, improved drought tolerance in transgenic rice. In this study, measurement of water loss rate, transpiration rate, stomatal conductance, guard cell aperture, density and length of ZmPIF3 transgenic plants showed that ZmPIF3 can enhance water-saving and drought-resistance by decreasing stomatal aperture and reducing transpiration in both transgenic rice and transgenic Arabidopsis. Scrutiny of sensitivity to ABA showed that ZmPIF3 transgenic rice was hypersensitive to ABA, while the endogenous ABA level was not significantly changed. These results indicate that ZmPIF3 plays a major role in the ABA signaling pathway. In addition, DGE results further suggest that ZmPIF3 participates in the ABA signaling pathway and regulates stomatal aperture in rice. Comparison analysis of the phenotype, physiology, and transcriptome of ZmPIF3 transgenic rice compared to control plants further suggests that ZmPIF3 is a positive regulator of ABA signaling and enhances water-saving and drought-resistance traits by reducing stomatal openings to control water loss. Moreover, investigation of the agronomic traits of ZmPIF3 transgenic rice from four cultivating seasons showed that ZmPIF3 expression increased the tiller and panicle number and did not affect the grain yield in the transgenic rice. These results demonstrate that ZmPIF3 is a promising candidate gene in the transgenic breeding of water-saving and drought-resistant rice plants and crop improvement.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oryza / Estresse Fisiológico / Zea mays / Fatores de Transcrição Hélice-Alça-Hélice Básicos Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oryza / Estresse Fisiológico / Zea mays / Fatores de Transcrição Hélice-Alça-Hélice Básicos Idioma: En Ano de publicação: 2018 Tipo de documento: Article