Your browser doesn't support javascript.
loading
Three-dimensional porous microspheres comprising hollow Fe2O3 nanorods/CNT building blocks with superior electrochemical performance for lithium ion batteries.
Park, Seung-Keun; Park, Gi Dae; Kang, Yun Chan.
Afiliação
  • Park SK; Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea. yckang@korea.ac.kr.
Nanoscale ; 10(23): 11150-11157, 2018 Jun 14.
Article em En | MEDLINE | ID: mdl-29873376
ABSTRACT
It is highly desirable to develop anode materials with rational architectures for lithium ion batteries to achieve high-performance electrochemical properties. In this study, three-dimensional porous composite microspheres comprising hollow Fe2O3 nanorods/carbon nanotube (CNT) building blocks are successfully constructed by direct deposition and further thermal transformation of beta-FeOOH nanorods on CNT porous microspheres. The CNT porous microsphere, which is prepared by a spray pyrolysis, provides ample sites for the direct growth of beta-FeOOH nanorods. During the further oxidation process, the beta-FeOOH nanorods are transformed into hollow Fe2O3 nanorods as a result of dehydroxylation and lattice shrinkage, resulting in the formation of hollow Fe2O3 nanorods/CNT porous microspheres. Such a hierarchical structure of composite microspheres not only facilitates electrolyte accessibility but also offers conductive networks for electrons during electrochemical reactions. Accordingly, the electrodes exhibit a high discharge capacity of 1307 mA h g-1 after 300 cycles at a current density of 1 A g-1; this is associated with an excellent capacity retention of 84%, which is calculated from the initial cycle. In addition, the composite delivers a discharge capacity of 703 mA h g-1 at a current density of 15 A g-1.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article