Your browser doesn't support javascript.
loading
Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation.
Niu, Zhuyu; Jia, Yating; Chen, Yuancai; Hu, Yongyou; Chen, Junfeng; Lv, Yuancai.
Afiliação
  • Niu Z; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China. Electronic address: niuzhuyu11@163.com.
  • Jia Y; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China. Electronic address: 643360417@qq.com.
  • Chen Y; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China. Electronic address: chenyc@scut.edu.cn.
  • Hu Y; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
  • Chen J; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Life Sciences, Qufu Normal University, Qufu 27
  • Lv Y; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; College of Environment & Resources, Fuzhou Universit
Ecotoxicol Environ Saf ; 161: 356-363, 2018 10.
Article em En | MEDLINE | ID: mdl-29890437
ABSTRACT
This study constructed a biological-inorganic hybrid system including Pseudomonas putida (P. putida) and bioreduced Pd (0) nanoparticles (NPs), and inspected the influence of bio-nano Pd (0) on the direct electron transfer and phenol biodegradation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) showed that bio-nano Pd (0) (~10 nm) were evenly dispersed on the surface and in the periplasm of P. putida. With the incorporation of bio-nano Pd (0), the redox currents of bacteria in the cyclic voltammetry (CV) became higher and the oxidation current increased as the addition of lactate, while the highest increase rates of two electron transfer system (ETS) rates were 63.97% and 33.79%, respectively. These results indicated that bio-nano Pd (0) could directly promote the electron transfer of P. putida. In phenol biodegradation process, P. putida-Pd (0)- 2 showed the highest k (0.2992 h-1), µm (0.035 h-1) and Ki (714.29 mg/L) and the lowest apparent Ks (76.39 mg/L). The results of kinetic analysis indicated that bio-nano Pd (0) markedly enhanced the biocatalytic efficiency, substrate affinity and the growth of cells compared to native P. putida. The positive effects of bio-nano Pd (0) to the electron transfer of P. putida would promote the biodegradation of phenol.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Paládio / Pseudomonas putida / Fenol / Transporte de Elétrons Tipo de estudo: Evaluation_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Paládio / Pseudomonas putida / Fenol / Transporte de Elétrons Tipo de estudo: Evaluation_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article