Your browser doesn't support javascript.
loading
A Novel Synonymous Variant in the AVP Gene Associated with Autosomal Dominant Familial Neurohypophyseal Diabetes Insipidus Causes Partial RNA Missplicing.
Kvistgaard, Helene; Christensen, Jane H; Johansson, Jan-Ove; Gregersen, Niels; Siggaard Rittig, Charlotte; Rittig, Søren; Corydon, Thomas J.
Afiliação
  • Kvistgaard H; Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
  • Christensen JH; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
  • Johansson JO; Department of Endocrinology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
  • Gregersen N; Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
  • Siggaard Rittig C; Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
  • Rittig S; Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
  • Corydon TJ; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Neuroendocrinology ; 107(2): 167-180, 2018.
Article em En | MEDLINE | ID: mdl-29949799
ABSTRACT

OBJECTIVE:

Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is characterized by severe polyuria and polydipsia and is caused by variations in the gene encoding the AVP prohormone. This study aimed to ascertain a correct diagnosis, to identify the underlying genetic cause of adFNDI in a Swedish family, and to test the hypothesis that the identified synonymous exonic variant in the AVP gene (c.324G>A) causes missplicing and endoplasmic reticulum (ER) retention of the prohormone. DESIGN/PATIENTS Three affected family members were admitted for fluid deprivation test and dDAVP (1-deamino-8-d-arginine-vasopressin) challenge test. Direct sequencing of the AVP gene was performed in the affected subjects, and genotyping of the identified variant was performed in family members. The variant was examined by expression of AVP minigenes containing the entire coding regions as well as intron 2 of AVP. METHODS/

RESULTS:

Clinical tests revealed significant phenotypical variation with both complete and partial adFNDI phenotype. DNA analysis revealed a synonymous c.324G>A substitution in one allele of the AVP gene in affected family members only. Cellular studies revealed both normally spliced and misspliced pre-mRNA in cells transfected with the AVP c.324G>A minigene. Confocal laser scanning microscopy showed collective localization of the variant prohormone to ER and vesicular structures at the tip of cellular processes.

CONCLUSION:

We identified a synonymous variant affecting the second nucleotide of exon 3 in the AVP gene (c.324G>A) in a family in which adFNDI segregates. Notably, we showed that this variant causes partial missplicing of pre-mRNA, resulting in accumulation of the variant prohormone in ER. Our study suggests that even a small amount of aberrant mRNA might be sufficient to disturb cellular function, resulting in adFNDI.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Precursores de Proteínas / Neurofisinas / Vasopressinas / Diabetes Insípido Neurogênico Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Female / Humans / Male Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Precursores de Proteínas / Neurofisinas / Vasopressinas / Diabetes Insípido Neurogênico Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Female / Humans / Male Idioma: En Ano de publicação: 2018 Tipo de documento: Article