Your browser doesn't support javascript.
loading
MetaboRank: network-based recommendation system to interpret and enrich metabolomics results.
Frainay, Clément; Aros, Sandrine; Chazalviel, Maxime; Garcia, Thomas; Vinson, Florence; Weiss, Nicolas; Colsch, Benoit; Sedel, Frédéric; Thabut, Dominique; Junot, Christophe; Jourdan, Fabien.
Afiliação
  • Frainay C; Toxalim, Université de Toulouse, INRA, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
  • Aros S; Medday Pharmaceuticals, Paris, France.
  • Chazalviel M; Medday Pharmaceuticals, Paris, France.
  • Garcia T; Toxalim, Université de Toulouse, INRA, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
  • Vinson F; Toxalim, Université de Toulouse, INRA, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
  • Weiss N; Unité de Réanimation Neurologique, Département de Neurologie, Pôle des Maladies du Système Nerveux Central, Groupement Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique - Hôpitaux de Paris, Paris, France.
  • Colsch B; Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, Groupement Hospitalier Pitié-Salpêtrière-Charles Foix, Assistance Publique - Hôpitaux de Paris & INSERM UMR_S 938, CDR Saint-Antoine Maladies Métaboliques, Biliaires et Fibro-inflammatoire du Foie & Institut de Cardiométabolisme et Nutrition
  • Sedel F; Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, MetaboHUB, Gif-sur-Yvette, France and.
  • Thabut D; Medday Pharmaceuticals, Paris, France.
  • Junot C; Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, Groupement Hospitalier Pitié-Salpêtrière-Charles Foix, Assistance Publique - Hôpitaux de Paris & INSERM UMR_S 938, CDR Saint-Antoine Maladies Métaboliques, Biliaires et Fibro-inflammatoire du Foie & Institut de Cardiométabolisme et Nutrition
  • Jourdan F; Unité de Soins Intensifs d'Hépato-gastroentérologie, Groupement Hospitalier Pitié-Salpêtrière-Charles Foix, Assistance Publique - Hôpitaux de Paris et Université Pierre et Marie Curie Paris 6, Paris, France.
Bioinformatics ; 35(2): 274-283, 2019 01 15.
Article em En | MEDLINE | ID: mdl-29982278
Motivation: Metabolomics has shown great potential to improve the understanding of complex diseases, potentially leading to therapeutic target identification. However, no single analytical method allows monitoring all metabolites in a sample, resulting in incomplete metabolic fingerprints. This incompleteness constitutes a stumbling block to interpretation, raising the need for methods that can enrich those fingerprints. We propose MetaboRank, a new solution inspired by social network recommendation systems for the identification of metabolites potentially related to a metabolic fingerprint. Results: MetaboRank method had been used to enrich metabolomics data obtained on cerebrospinal fluid samples from patients suffering from hepatic encephalopathy (HE). MetaboRank successfully recommended metabolites not present in the original fingerprint. The quality of recommendations was evaluated by using literature automatic search, in order to check that recommended metabolites could be related to the disease. Complementary mass spectrometry experiments and raw data analysis were performed to confirm these suggestions. In particular, MetaboRank recommended the overlooked α-ketoglutaramate as a metabolite which should be added to the metabolic fingerprint of HE, thus suggesting that metabolic fingerprints enhancement can provide new insight on complex diseases. Availability and implementation: Method is implemented in the MetExplore server and is available at www.metexplore.fr. A tutorial is available at https://metexplore.toulouse.inra.fr/com/tutorials/MetaboRank/2017-MetaboRank.pdf. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Metabolômica Tipo de estudo: Guideline Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Metabolômica Tipo de estudo: Guideline Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article