Your browser doesn't support javascript.
loading
UV-Triggered Transient Electrospun Poly(propylene carbonate)/Poly(phthalaldehyde) Polymer Blend Fiber Mats.
ACS Appl Mater Interfaces ; 10(34): 28928-28935, 2018 Aug 29.
Article em En | MEDLINE | ID: mdl-30044081
ABSTRACT
This work reports the first transient electrospun nanofiber mat triggered by UV-irradiation using poly(propylene carbonate) (PPC)/poly(phthalaldehyde) (cPPA) polymer blends. The ability to trigger room temperature transience of nanofiber mats without the need for additional heat or solvent expands its utility in nonbiological fields, especially for transient electronic devices. The addition of a photo-acid-generator to the system, working in combination with UV light, provides an acid source to enhance degradation because both polymer backbones are acid-sensitive. Electrospinning enables the production of PPC/cPPA composite nanofiber mats capable of significant degradation upon exposure to UV radiation while maintaining relatively high mechanical properties. An acid amplifier, an autocatalytically decomposing compound triggered by acid, was used to generate more acid and accelerate nanofiber degradation. The electrospun fiber mats can be post-annealed to achieve an improved mat with a mechanical strength of ∼170 MPa.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article