Your browser doesn't support javascript.
loading
Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity.
Shrestha, Brikha R; Chia, Chester; Wu, Lorna; Kujawa, Sharon G; Liberman, M Charles; Goodrich, Lisa V.
Afiliação
  • Shrestha BR; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Chia C; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Wu L; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Kujawa SG; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA.
  • Liberman MC; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA.
  • Goodrich LV; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: lisa_goodrich@hms.harvard.edu.
Cell ; 174(5): 1229-1246.e17, 2018 08 23.
Article em En | MEDLINE | ID: mdl-30078709
ABSTRACT
In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Receptoras Sensoriais / Células Ciliadas Auditivas Internas / Orelha Interna Tipo de estudo: Guideline / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Receptoras Sensoriais / Células Ciliadas Auditivas Internas / Orelha Interna Tipo de estudo: Guideline / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article