Your browser doesn't support javascript.
loading
Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans.
Gao, Huihui; Wang, Yan; Li, Wei; Gu, Yongzhe; Lai, Yongcai; Bi, Yingdong; He, Chaoying.
Afiliação
  • Gao H; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.
  • Wang Y; University of Chinese Academy of Sciences, Beijing, China.
  • Li W; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.
  • Gu Y; Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China.
  • Lai Y; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.
  • Bi Y; University of Chinese Academy of Sciences, Beijing, China.
  • He C; Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China.
J Exp Bot ; 69(21): 5089-5104, 2018 10 12.
Article em En | MEDLINE | ID: mdl-30113693
Soybean (Glycine max) was domesticated from its wild relative Glycine soja. However, the genetic variations underlying soybean domestication are not well known. Comparative transcriptomics revealed that a small portion of the orthologous genes might have been fast evolving. In contrast, three gene expression clusters were identified as divergent by their expression patterns, which occupied 37.44% of the total genes, hinting at an essential role for gene expression alteration in soybean domestication. Moreover, the most divergent stage in gene expression between wild and cultivated soybeans occurred during seed development around the cotyledon stage (15 d after fertilization, G15). A module in which the co-expressed genes were significantly down-regulated at G15 of wild soybeans was identified. The divergent clusters and modules included substantial differentially expressed genes (DEGs) between wild and cultivated soybeans related to cell division, storage compound accumulation, hormone response, and seed maturation processes. Chromosomal-linked DEGs, quantitative trait loci controlling seed weight and oil content, and selection sweeps revealed candidate DEGs at G15 in the fruit-related divergence of G. max and G. soja. Our work establishes a transcriptomic selection mechanism for altering gene expression during soybean domestication, thus shedding light on the molecular networks underlying soybean seed development and breeding strategy.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sementes / Glycine max / Variação Genética / Transcriptoma / Domesticação Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sementes / Glycine max / Variação Genética / Transcriptoma / Domesticação Idioma: En Ano de publicação: 2018 Tipo de documento: Article