Your browser doesn't support javascript.
loading
Redox-coupled quinone dynamics in the respiratory complex I.
Warnau, Judith; Sharma, Vivek; Gamiz-Hernandez, Ana P; Di Luca, Andrea; Haapanen, Outi; Vattulainen, Ilpo; Wikström, Mårten; Hummer, Gerhard; Kaila, Ville R I.
Afiliação
  • Warnau J; Department Chemie, Technische Universität München, D-85748 Garching, Germany.
  • Sharma V; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
  • Gamiz-Hernandez AP; Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland; vivek.sharma@helsinki.fi gerhard.hummer@biophys.mpg.de ville.kaila@ch.tum.de.
  • Di Luca A; Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland.
  • Haapanen O; Department Chemie, Technische Universität München, D-85748 Garching, Germany.
  • Vattulainen I; Department Chemie, Technische Universität München, D-85748 Garching, Germany.
  • Wikström M; Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland.
  • Hummer G; Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland.
  • Kaila VRI; Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.
Proc Natl Acad Sci U S A ; 115(36): E8413-E8420, 2018 09 04.
Article em En | MEDLINE | ID: mdl-30120126
ABSTRACT
Complex I couples the free energy released from quinone (Q) reduction to pump protons across the biological membrane in the respiratory chains of mitochondria and many bacteria. The Q reduction site is separated by a large distance from the proton-pumping membrane domain. To address the molecular mechanism of this long-range proton-electron coupling, we perform here full atomistic molecular dynamics simulations, free energy calculations, and continuum electrostatics calculations on complex I from Thermus thermophilus We show that the dynamics of Q is redox-state-dependent, and that quinol, QH2, moves out of its reduction site and into a site in the Q tunnel that is occupied by a Q analog in a crystal structure of Yarrowia lipolytica We also identify a second Q-binding site near the opening of the Q tunnel in the membrane domain, where the Q headgroup forms strong interactions with a cluster of aromatic and charged residues, while the Q tail resides in the lipid membrane. We estimate the effective diffusion coefficient of Q in the tunnel, and in turn the characteristic time for Q to reach the active site and for QH2 to escape to the membrane. Our simulations show that Q moves along the Q tunnel in a redox-state-dependent manner, with distinct binding sites formed by conserved residue clusters. The motion of Q to these binding sites is proposed to be coupled to the proton-pumping machinery in complex I.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Benzoquinonas / Thermus thermophilus / Yarrowia / Complexo I de Transporte de Elétrons Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Benzoquinonas / Thermus thermophilus / Yarrowia / Complexo I de Transporte de Elétrons Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article