Your browser doesn't support javascript.
loading
Observation of topological phenomena in a programmable lattice of 1,800 qubits.
King, Andrew D; Carrasquilla, Juan; Raymond, Jack; Ozfidan, Isil; Andriyash, Evgeny; Berkley, Andrew; Reis, Mauricio; Lanting, Trevor; Harris, Richard; Altomare, Fabio; Boothby, Kelly; Bunyk, Paul I; Enderud, Colin; Fréchette, Alexandre; Hoskinson, Emile; Ladizinsky, Nicolas; Oh, Travis; Poulin-Lamarre, Gabriel; Rich, Christopher; Sato, Yuki; Smirnov, Anatoly Yu; Swenson, Loren J; Volkmann, Mark H; Whittaker, Jed; Yao, Jason; Ladizinsky, Eric; Johnson, Mark W; Hilton, Jeremy; Amin, Mohammad H.
Afiliação
  • King AD; D-Wave Systems Inc., Burnaby, British Columbia, Canada. aking@dwavesys.com.
  • Carrasquilla J; Vector Institute, MaRS Centre, Toronto, Ontario, Canada.
  • Raymond J; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Ozfidan I; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Andriyash E; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Berkley A; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Reis M; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Lanting T; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Harris R; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Altomare F; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Boothby K; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Bunyk PI; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Enderud C; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Fréchette A; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Hoskinson E; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Ladizinsky N; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Oh T; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Poulin-Lamarre G; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Rich C; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Sato Y; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Smirnov AY; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Swenson LJ; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Volkmann MH; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Whittaker J; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Yao J; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Ladizinsky E; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Johnson MW; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Hilton J; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
  • Amin MH; D-Wave Systems Inc., Burnaby, British Columbia, Canada.
Nature ; 560(7719): 456-460, 2018 08.
Article em En | MEDLINE | ID: mdl-30135527
ABSTRACT
The work of Berezinskii, Kosterlitz and Thouless in the 1970s1,2 revealed exotic phases of matter governed by the topological properties of low-dimensional materials such as thin films of superfluids and superconductors. A hallmark of this phenomenon is the appearance and interaction of vortices and antivortices in an angular degree of freedom-typified by the classical XY model-owing to thermal fluctuations. In the two-dimensional Ising model this angular degree of freedom is absent in the classical case, but with the addition of a transverse field it can emerge from the interplay between frustration and quantum fluctuations. Consequently, a Kosterlitz-Thouless phase transition has been predicted in the quantum system-the two-dimensional transverse-field Ising model-by theory and simulation3-5. Here we demonstrate a large-scale quantum simulation of this phenomenon in a network of 1,800 in situ programmable superconducting niobium flux qubits whose pairwise couplings are arranged in a fully frustrated square-octagonal lattice. Essential to the critical behaviour, we observe the emergence of a complex order parameter with continuous rotational symmetry, and the onset of quasi-long-range order as the system approaches a critical temperature. We describe and use a simple approach to statistical estimation with an annealing-based quantum processor that performs Monte Carlo sampling in a chain of reverse quantum annealing protocols. Observations are consistent with classical simulations across a range of Hamiltonian parameters. We anticipate that our approach of using a quantum processor as a programmable magnetic lattice will find widespread use in the simulation and development of exotic materials.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article